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Abstract. 

In this paper we study the deformation theory of rational surface 

singularities with reduced fundamental cyc/e. Generators for Tt and 

T2 are determined, the obstruction map identified and an algorithm 

to find a versal family, starting from a resolution graph, is described. 
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Fora genn of an analytic space X with an isolated singular point the 

existence of a semi -universal (or versal) deformation X-a ---+ ~ of 

X has been proved by Schlessinger CSchl 1l in the formal, and by 

Grauert [Gral in the analytic case. We call ~ the base space of a 

semi-universal deformation of X, or, as it is unique up to (non-unique) 

isomorphism, the base space of X, for short. The Zariski-tangent space 
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to "'B can be naturally identified with the vector space T~ = Def(X)(T). 

where T = Spec(C[e]/(e2)) and Def denotes the deformation functor . 

The space "'B is smooth if the obstruction space T~ is zero. This 

happens for instance if X is a complete intersection , or if X is 

Cohen-Macaulay of codimension two . In these cases it is therefore 

relatively easy to compute a versa! deformation of X. In general 

however, "'8 can be very complicated. lt can have many singular 

components, intersecting in a complicated way. 

Although obstruction calculus (see e.g . [Laud]) can be used to compute 

a v.ersal deformation to every order, this method is quite involved and 

requires enormous computational skill. lt is a major problem in 

deformation theory to find a description of a versa! deformation that 

leads to an understanding of the component structure of 'B. 

The deformation theory of 'rational surface singularities has been 

studied by various authors. We mention Pinkham CPiJ, Riemenschneider 

[RiJ, Wahl CWa 2J, Kollar and Shepherd-Barron [K-Sl, Arndt (Arnl, 

Christophersen CChl, Behnke and Knörrer CB-Kl, Stevens CSt tl, and 

the authors [J-S J, etc. In particular the dass of (cyclic) quotient 

singularities has been studied thoroughly , as weil as rational singulari­

ties of multiplicity four. 

In this article we study the deformation theory of rational surface 

singularities with reduced fundamental cycle. As this class properly 

contains the dass of cyclic quotient singularities , our results can be 

seen as a generalization of part of t he results that are known fo r 

these singularities. We have obtained the following results : 

1) : Starting from the resolution graph r we describe how to find 

equations for all rational surface singularities X with resolution 

graph r . This is subject of §2 , in particular (2 .2) and (2 .9). 

2) : We find explicit minimal generating sets (as Ox- modules) for T~ 
2 and T X , see (3.14) . 
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3) : We derive the following dimension formulae. see (3.16): 

A. dimCT1x) = L (m(v)-3) + dimCH1<X. ex) 
VEBT(4) 

B. dim<T2x) = L (m(v)-1 Hm(v)-3) 
VEBT(4) 

In these formulae the sums run over the nodes v of the so-called 

blow-up tree (t.10) BT which are of multiplicity m(v)~4. A node v 

of BT corresponds to a singularity appearing in the process of 

resolving X by blowing up points. X is the minimal resolution , and 

formula A. is maybe best understood as a statement about the 

codimension of the Artin component. 

4) : The obstruction map is surjective (4.2) . This means that the minimal 

number equations for the base space 1J of X is equal to the 

. dimension of r2x. 
5): We describe an algorithm for computing a versa/ deformation of 

X, see (4.6) and (4.8). The equations for the base space ""8 appear 

as the coefficients of polynomials that occur as remainders of 

certain specific divisions. 

The results of thls article are based on four main ideas, which we 

will describe now . 

The first idea is that of hyperplane sections. This was used before 

by various authors e.g . Buchweitz CBu1, Behnke and Christophersen 

CB- K1 and Stevens [St 31 . Behnke and Christophersen prove · that a 

general hyperplane section Y of a rational surface singularity is 

Isomorphie to a so called partition curve. If the fundamental cycle is 

reduced, then Y is isomorphic to the union Up~ Y p of the coordinate 

axes in cm. m=mult(X). (Here +t is an index set). A basic fact is the 

converse: Any total space of a one parameter smoothing of Y is a 

rational surface singularity with reduced fundamental cycle, see (t .4). 

lt is not true for the other partition curves, however, that the total 

space of any one-parameter smoothing is rational; it is easy to 

construct counter examples . This explains partly why the case of 
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reduced fundamental cycle is easier to handle . 

As a semi-universal deformation of Y has been computed by Rim, one 

gets immediately equations for X by pulling back the equations for 

the semi-universal family . In particular, for p ,q E +t, p:i:q, one gets 

functions spq E C{x}, and for p,q,re+t, p,q,r all different, functions 

.p(p,q;r)eC{x}, satisfying a set of compatibility equations (the "Rim 

Equations"}: 

spq = .p(r,q; p)tp(r,p;q) 

tp(p,q;s) + <p(q,r; s) + .p(r,p; s) = 0 

such that X is descibed by the system of "Canonical Equations": 

ZpqZqp= Spq 

zpr -zqr = <p(p,q;r) 

see (2.2). The vanishing orders of the Spq relate to the lenghts of 

chains in the resolution graph of X, and in fact determine this graph . 

(see (2 .7) .) We remark that for the cyclic quotient singularities , the 

equations are totally different from those found by Riemenschneider 

CRiJ. Various arguments in the article are based on these explicit 

equations . 

The second idea is that of looking at a special defonnation of X. 

This is a deformation having as special fibre X and as general fibre 

a space having as singulariies the cone over the rat ional normal curve 

of degree equal to the multiplicity of X together with all singularities 

appearing on the first blow-up of X. The existc;nce of this deformation 

follows from the explicit equations for X, see (2.13). This deformation 

plays an important role in proof s. For example the surjectivity of the 

obstruction map follows relatively easy from the existence of t his 

deformation. Moreover the ~ statements in the dimension formu lae 

4A. and 4. B. also follow immediately from lt . To get equality in 4.A 

and 4 .B it suffices to lift generator~ of T1x and T~ over the special 

deformation. That this indeed is possible, is the content of Proposition 

(3.15). The proof uses the explicit generators for these modules. 
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The third idea is the idea of limits, series and stability. This idea is 

not made explicit nor is it really used in this article. Rather it is an 

heuristic principle based on various special results and ideas. ([Aml, 

[J-Sl, CStr]). Roughly speaking the philosophy is as follows: weakly 

normal surface singularities appear as Jimits of series of rational 

surface singularities. In the resolution graphs of the members of the 

series we find chains of (-2) -curves of increasing length. The 

archetypical example as that of the Aro -singularity as limit of the 

Ak-series. Stability should mean that for members· in the series with 

"very long" (-2)-chains the base spaces are the same up to a smooth 

factor. This should also be the base space of the limit, up to an 

infinite dimensional smooth factor, if properly understood. 

The weakly normal limits of series of rational surface singularities 

with reduced fundamental cycle have a simple structure and are called 

tree singularities. These tree singularities do not appear explicitly in 

this article but played an important role in the development of our 

ideas . Such a tree singularity has as irreducible components (germs 

ofl smooth planes XP for every vertex p of a certain tree T. Two such 

planes XP and Xq intersect in 0 exactly when {p,q} is not an edge of 

T, otherwise they intersect in a smooth curve :Epq· Moreover, 

~pq n :Ers = O if {p,q}*fr.s}. The generators of the space of infinitesimal 

deformations of the tree singularity have a simple geometrical meaning: 

first of all, for each edge {p,q} of T there is the deformation t(p,q) 

that opens up the A
00 

-singularity that sits on the generic point of :Epq· 

These are the defonnations of the limlt in the members of the series. 

Secondly, for every pair (p,q) with {p,q} an edge of T one can move 

the curve Lpq in the plane Xq , and move XP accordingly. These give 

deformations o(p,q) and could' be called the shift deformations. Also. 
~ . 

t.he obstruction space r~ of such a tree singularity has a rather simple 

com binatorial description. 
\ 

In the article we introduce the notion of a limit tree T for a rational 

surface singularity X with reduced fundamental cycle, see (1.12). The 
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relation is that one can view X as member of the series deformation 

of a tree singularity with tree T. In this way the Jimit tree is seen 

to make a distinction between "long" and "short" chains in the 

resolution graph, the long ones being those that correspond to the 

series deformations. In fact, equations for the tree singularities are 

obtained by putting SP<t 0 for {p,q} an edge of T. This corresponds 

to making the long chains "infinitely long", in very much the same way 

as one gets from the Ak-equation yz-xk+1 =O the equation yz=O 

describing the A
00 

-singularity. The explicit generators for T1 and T2 

obtained in § 3 are lifts of corresponding generators for the tree 

singularities, which are substantially easier to write down . 

We will now describe the idea behind the construction of a versa} 

deformation of X. A versa! deformation X13 --+13 also can be inter­

preted as a flat deformation of the generic hyperplane section Y, so 

it can be described by the Canonical Equations: 

ZpqZqp = Tpq 

Zpr - Zqr= ljl(p,q; r) 

where now T pq and 4J(p,q;r) are elements of °'B{x} that satisfy the 

Rim Equations . These T pq and 4J(p,q;r) are perturbations of the Spq 

and 1P(p,q;r) defining X. lt is a basic fact that 2.m-3 (the dimension 

of the smoothing component of Y) particular IP' s rationally determine 

all the other IP' s (and S's) via the Rim Equations. We call such a set 

of tp's fundamental . Perturbing these fundamental tp's arbitrarily to 

4>' s, one can try to determine the other <lJ's in the same way as could 

be done for the IP's. För this the Rim Equations teil you to make 

certain divisions. The biggest space over which these divisions are 

possible is the base space 13, and hence is defined by the coefficients 

of remainders of Weierstrass-divisions . The main problem is to find 

out. which 4>' s to take as fundamental. Again this is organized by the 

choice of a limit tree. 

The number of divisions that has to be done is equal to (m- lHm-3), 

precisely the number of generators of T~, CB-Cl. The generators 

K(p ,q) of T ~ in (3.22) are constructed in such a way that with each 

one of them there corresponds exactly one division with remainder. 

- 6 -

• 



Although the equations for the base space 13 thus obtained become 

extremely complicated, it is our hope that the combinatorial description 

with the limit tree and the divisions with remainder wil 1 provide us 

some insight into the structure of 13. We hope to report on this in a 

future article. 

The organization of the article is as follows : 

In §1 we Iist some facts on rational singularities and introduce the 

concepts of blow- up tree and limit tree . We advise the reader to start 

with §2. and go back to §1 if necessary. In §2 the structure of · the 

equations of a rational surface singularity with reduced fundamental 

cycle is studied and the special deformation is exhibited. §3 is devoted 

to the structure of r1x and r2x. In §3.A the generators are constructed 

and the dimension formulae proved. In §3.B we study the relations 

between the generators. For T~ our results are complete but for T ~ 
we only have a good description "modulo moduli" . Finally, in §4 the 

algorithm for computing a versal deformation is described. 

In some of the proofs elementary combinatorics of trees is used. We 

strongly advise the reader to draw pictures of resolutions graphs and 

limit trees for him or herself, as we think that it will help understan­

ding the arguments. 

,4eknowle~gem<mt. 

We tha~k K. Behnke and J. Christophersen for fruitful discussions 

that resulted in a then conjectural dimension formula for T2x, and 

supplying the first experimental evidence. Especially we thank 
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continuous support. We also thank J. Stevens whose remarks have 

influenced some of our ideas. 
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Community (SCIENCE project). 
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In this article we study Rational Surface Singu/arities with Reduced 

Fundamental Cycle. Three different trees associated to such a 

singularity will play a role , andin this preliminary section we introduce 

these in separate subsections. 

Westart with some well-known definitions and facts. This also serves 

to fix notations that will be used in the rest of the article without 

further mentioning. 

Let X = (X,0) be a normal surface singularity and Jet 

Tt : ( X,E) ---+ (X,0) 

be the minimal resolution . 

X is called rational if 

In that case the exceptional divisor is the union of irreducible 

components Ei , each isomorphic to IP1, and intersecting transversely. 

The (dual) reso/ution graph r has these Ei as vertices, and Ei is 

connected by an edge to Ej iff E1 . Ej > 0. For a rational singularity r 
is a tree . The fundamental cycle is the smallest positive cycle Z= 2.:ci E1 

such that Z.Ei ~ 0 for all i. This cycle has the property that the divisor . 

Cfo1t > on x for a general f emx has the form: 

(fon)=Z+N 

where N is the non compact part of the divisor. 

We say that X has reduced fundamental cycle if Z = E. or ci = 1. for 

all i. There is the following characterization for X to have this property. 
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X is a rational surface singularity with reduced fundamental cycle 

# 

f is a tree, Ei~IP 1 and for all i one has -Ei .Ei :<!:•{j* i :E1 nEfl= <!>} 

In particular for any tree f we get examples by choosing the seif 

intersections sufficiently negative . 

With the help of hyperplane sections one can give an alternative 

characterization of this class of singularities. 

~(*1.3)1 

+I. :=<1 ,2, . .. ,m} 

Yp :cm--+ C, p•+I. , coordinate functions on cm 

y := vpt+i. yp c ccm 

= the union of the coordinate axes Y p :={yq =O, q:l=p} 

~(1.4)1 

Equivalent are: 

1 ) X is a rational surface singularity with reduced fundamental cycle 

of multiplicity m. 

2) X is the total space of a one parameter smoothing of Y, i.e. we 

a cartesian diagram 

where T is a small disc in C. 

ptc~ 1 Any normal surface singularity can be considered as a one 

parameter smoothing of a generic hyperplane section. The generic 

hyperplane section of a rational surface singularity is isomorphic to 

Y exactly when the fundamental cycle is reduced (see for instance 

[B-CJ 4 .3.1.). On the other hand X can be considered as a small 

deformation of Y x T . As Y x T is weakly rational in the sense of 
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CStr] 4.1.1, it follows from the semi-continuity of Pg ( see CStr.2.5 .28]) 

that X has to be weakly rational. As the total space of a smoothing 

of Y, X is normal, hence rational. 

We now consider the· divisor (xon) on X. We can write: 

where HP is the strict transform of Y p· Each HP, pE+t intersects a 

unique exceptional curve EP, and thus we get a map +t ---+ r. Note 

that the number of HP 's intersecting an F in r is -Z .F. 

~(1~), 

The extended (dual) resolution graph r e is the tree obtained by adding 

for each p E +t a vertex connected to Ep. 

So the set of endpoints of r e is +t and the seif- intersection of any 

F in r is the number of vertices of r e adjacent to F. 

We define the Jength Function l by l : r X r ---+IN; 

(F,G) 1---+arvertices of C(F,G) 

and the over/ap function p by p :fxf xf --+IN; 

(F ,G, H) t-+ aivertices of C(F ,H) j) C(G,H) 

Here C(F,G) is the chain from F to G Cincluding end points) in r. 
By composition with the above map +t ---+ r we get maps: 

+tx+t IN 

+tx+t x+t ---+IN 

etc, which we also denote by l and p. 
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Consider the following dual resolution graph: 

p 
0--0---0--0-0 

1 r s 
1 x--x-o--o--o-x-o--o 

0--0--0---0--0--0 
t 

o = (-2)- curve ; x=(-3)- curve 

Then one has: l<p,q)=9 ,l(r,s)=3, etc. 

p(r,t;q)=3, p(q,t;p)=S ;p(p,q;t)=6, etc. 

It is not hard to see that the extended resolution graph r e is detennined 

by the function l :+f.x+f. -+IN or by the function p :+f.x+f.x+f. --+IN. 

However, one does not need to know the complete l or p function to 

detennine r e· In fact the knowledge of 2 m-3 particular lengths 

determine r e · 

1'u1ttu1.tüm ( „ ·') ' 
Let pdi. and <q1,q2,„.,qm-t>=+f.-{p}. 

Let be given a set A of 2m-3 numbers 

l1€IN,i=1,2, ... ,m-1 

pielN,i=t,2, . .. ,m-2 

with the conditions that Pt< lt and Pt< lt+1 for i=1,2, „ „ m-2. 

Then there is a unique tree f e(A) wtth the following properties: 

1) l(p,qt) = l1 

2) p(qi ,qj;p) = min{ Pk 1 i~ k < j} for i < j. 

Conversely, any tree r e is equal to some f e(A) for some A. 

In particular, for any pe+I., the tree f e is determined by the numbers 

l(p,q), qe+f.-{p} and p(r,q;p) ,r,qe+f.-{p}. 

pto"' : Given a tree f e such a set A can be obtained as follows: 

Step 1) Choose a p and q1 e +f. arbitrarily and put l1 =l(p,qt) 

Step 2) Suppose we have chosen q1, . „ ,qk then choose qk+t such 

that p(qk,qk+l ;p)=max{p(qk,r;p)I n+f.-{p,ql „ ... qk}}. 

Step 3) Put lk+t =l(p,qk+t>, Pk=p(qk,qk+t ;pL 

Here we strongly advise the reader to make a picture. 
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The second tree we consider can be defined for any rational surface 

singularity X. Furthennore we introduce the so called height function 

ht on r that will be used also in 1.C. In order to define these concepts 

we recall a result of Tjurina. 

A 

Let b: X --+ X be the blow-up of X at the singular point . 
A _ A 

Let f : = {Fe f: Z·F = 0}, and let XI f be the space obtained 
A 

from X by blowing down the curves of r . Then there exists an 

isomorphism: 
A "J - /\ 

x ~x1r 

A 

So we see that X has a finite number of rational singularities, each 

one having as resolution graph a connected component of f 2. This 

result leads to the definition of the blow-up tree of X: 

~(-t.-tO}r 

a)A filtration fk 011 f is defined inductively by: 

r1 =r 
rk ={FE rk-1 : F. zk-1=0}, zk-1 being the fundamental cycle of rk-1· 

b) The vertices of the blow-up tree consist of the collection of the 

connected components of the rk for k = 1.2, „ „ 

c)The height function ht on the vertices of BT is given by: 

ht(v): = sup{k: vc rk} 

d) The vertices v and w are connected by an edge in the blow-up 

tree BT iff jht(v) - ht(w) 1 = 1 and v c w or wc v. 

e) We also define the height function on the vertices of f by 

ht(F) = sup{ k : F E r k} 



f) For a vertex v of BT we define X(v) as the singularity obtained 

from X by blowing down v to a point. 

g) By abuse of notation we can convert any invariant of a singularity 

to a function on vertices of BT by putting: 

invariant(v) : = invariant(X(v)) 

~le ('1.'1'1)1 We consider the resolution graph of (1.7). Below 

we give the blow- up tree, together with the height function and the 

multiplicities of the singularities corresponding to the vertices. 

ht = 5 2 /o2 
ht = 4 3 /o2 
ht = 3 4 

ht = 2 4 o2 

ht = 1 5 

-t.C. 

Limit trees are used in §3 and 4 to handle the deformation theory of . 
rational surface singularities with reduced fundamental cycle. As 

explained in the introduction a limit tree serves to make a distinction 

between "lang" and "short" chains in the resolution graph. The formal­

ization of this idea resulted in the following definltion of a limit tree 

as a tre.e with certain properties . 

~ (1.'12)1 Let X be a rational surface singularity with reduced 

fundamental cycle, +t as in (1 .3) and p as in (1.6). 

A limit tree T for X is a tree with the following properties: 

0). The vertices of T are the elements of +f.. 

1) If {p,r} and {q ,r} are edges of T then: 

p(p ,q ;r ) ~ p(q ,r ;p) 

p(p,q ;r)) ~ p(r,p ;q) 
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2) If r and s are on the chain C(p,q) and {p,r} is an edge of T then: 

p(p,q;r) = p(p,s;r) 

3) If p, q and r are not on a chain in T and d is the centre of p,q ,r 

(i.e. the vertex C(p,q)n C(p,r) nc(q,r)) then : 

p(p,q ;r) ::t p (p,q ;d) 

The existence of limit trees is guaranteed by the following: 

~t-t.'laJ, 

Consider a rational surface singularity with reduced fundamental cycle, 

and dual graph of resolution r. A. limit equivalence relation "' is an 

equivalence relation on the vertices of f satisfying the following two 

conditions : 

a)Vertices F with ht(F) = 1, i.e. with Z.F <O, belong to different 

equivalence classes. 

b) For every vertex F with ht(F) = k+t. k~t. there is exactly one vertex 

G intersecting F and ht( G) = k with G "' F. 

That such equivalence relations exist follows from Tjurina's theorem 

(1.9) and the definitiorr of the height function. 

Consider the tree f / "-'. In every equivalence class there is exactly 

one exceptional curve F, with Z.F < 0. For every such F take an 

arbitrary tree T(F) with -Z.F vertices. and replace the equivalence class 

of F by T(f) in any way you like to get a tree T. We define a 

bijection: 

p e +t ..,__. verices of T 

Every p e +t corresponds to a curve EP with Z.Ep < 0 , hence corresponds 

to a vertex of f /rv. There are Z.Ep curves Hq intersecting Ep. Now 

take any bijection between those curves Hq and the vertices of T<EP). 
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The tree T thus obtained is a limit tree for X. 

Property 0) of (1. 12) is not worth mentioning. lt is obvious from the 

definition of limit equivalence relation that equivalence classes are 

connected. To prove property 1) of (1.12) we first remark that if Er = 

Ep or Eq, then p(p,q ;r)=t, so there is nothing to check. The fact that 

r lies on the chain from p to q in T means that EP and Eq lie in 

different connected components of r \{ equivalence class of E,J. As 

equivalence dasses are connected it follows that the chain from Er 

to the center C of p, q and r in r belongs to the limit equiyalence 

class of Er. lt follows from b) in the definition of a limit equivalence 

relation that on any chain starting at Er within the limit equival~nce 

class, the height function is monotonically increasing with steps one. 

Hence: 

ht(C) :::l<ErC)=p(p,q;r) 

As ht(Ep)=ht(Eq)=t and the height difference between two connected 

vertices of r is at most 1, it follows that: 

p(q,r;p) = lCEP.C):<-:ht(C) 

p(r,p;q) = lCEq.C):<-:ht(C) 

So 1) is proven. We will be more sketchy with the proofs of properties 

2) and 3). 

Let C(r,s) cC(p,q).The sub-tree of re spanned by p,q,r and s can 

a priori be of one of the following two types: 

p q p r 
A. 0 0 B. 0 0 

\01 \o~ a 
1 1 

10~ 
0 b 

j\ 0 0 
r s q s 

<Here the lines in the graphs do not. indicate edges of r e• but rather 



arbitrary chains; so it is a qualitative picture of the sub-tree. In 

particular a=b is allowed.) But if A. would occur with a*b, a would 

belong to the limit equivalence class of r, because r e C(p,q). 

Consequently, b would also belong to this limit equivalence class, and 

hence s would not be on C(p,q). We conclude that B. must be the case. 

But there we read off immediately that p(p,q;r) = l<a,r)=p(p,s;rJ, which 

is 2). Now let p,q,r not be on a chain, and let d be the centre of p,q 

and r in T. Again there are a priori . two cases to consider: 

p q p r 
c. 0 0 

\o{ 
D. 0 0 

\o{ 
1 1 
ob Ob 

j\ j\ 
r d q d 

But because d is supposed to be the centre, it means that a and hence 

b belang to the limit equivalence class of d. In C. we have: 

p(p,q;r) - p(p,q; d)= l(a,r) - l(a ,d) =l(b ,r )- [(b , d) = p( p .d;r)-p(p,r; d) 20 

because deC(p,r). Case D. is similar and left to t he reader. 181 

~ (i/.-15)1 . 

Consider the resolution graph of (1.7): 

o = (-2)- curve ; x=(-3)- curve 

The ovals indicate the limit equivalence classes. 

The resulting limit tree T is : 

p 0 

\q r s 

t 0/ 
0--0--0 

In thls example the Hmtt tree ts untque, but the Hmtt equtvalence 

relation is not. 
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One can consider a limit tree T, toget her with the data: 

* for all {p,q} E e(T) the number l (p,q) 

• for all {p,r}and {q,r}Ee(T) the number p(p,q;r) 

We will use the notation CT,l ,p) to denote exactly these data. 

~ ,„_„,,, 
The data (T,l,pl detennine the (extended) resolution graph f e· 

'1"""6 I 

Consider p, q e +t, and assume {p,q} not an edge of T. Then choose 

any r e C(p,q)-{p,q}. From the defining property (1.12) 2) it follows 

that we know p(p,q;r). As clearly 

lCp,q) = l(p,r)+[(p,r) - 2.-p(p,q;r) +1 

we know l(p,q) by induction on the number of vertices in C(p,q) .181 

So from (T,l,p) we can determine the resolution graph f, and from 
A 

r one can determine r = r 2• r 3 •. . . and the whole blow-up tree as in 
A 

t.B. But in fact there is a direct construction of a tree T (together 
A A 

with data l ,p ) whose connected components are limit trees for the 
A 

connected components of f , Le. the singularities of the blow-up. 

A 

We define an in general disconnected tree T, and a rnap of trees 
A 

b:T ---tT 

by the following procedure: 

* F or any p e v(T), we put 

r p s # p(r,s;p) > 1 

This is an equivalence relation, because of the tree numbers 

p(r,s;p), p(s,t;p), p(t,r;p) the smallest two are always the same. 

• We put: b-t(p_):={ p equivalence classes}. 
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• Let v(T) := UpEv(T) b-t(p). We have an obvious map 
/\ 

b:v<T) --+v(T) 
" I'\. A A /'\ • Let p and q E v(T) and let p = b{p) and q = b(q ) 

/\ /\ /\ 

Then we let {p ,q }E e{T) if and only· if: 

1) {p,q}E e(T) 

2) p E q and q E p 
3) l(p,q) ~3 

A 

• For p, q and r in the same connected component of T we 

l/\/\A l AAAA define: (p ,q) := (p,q) -2 and p (p ,q; r) :=p(p,q;r) - 1. 
A 

• Redefine v(T) by throwing away all vertices not connected to any 

other vertex. 

1'uJNUl.tl..ort ( _,. „ B) 1 

A /'\ A /'\ 

If (T,l,p) is a limit tree for f, then (T ,l ,p) is a limit tree for f=f2 

ptco6 1 We have to define a map 
A 

v(T) --+f2 - f3; p t-+ EP 
such that the properties of (1.12) are satisfied. Ep is defined to be 

the the unique curve of r intersecting Ep , p= b( p), such that Ep- lies 

on the chain 'in r from Ep to Eq ' where q E p. This is i
0

ndependent 

of the choice of q, because for any other np we have p(r,q ;p) > 1, and 

so the chains from r to p and q to p have at least Ef> in common. 

Because clearly p<Ep-.Eq ; E; )=p(Ep ,Eq ;Er )- 1, etc, the conditions 

of (1.12) are satisfied. 181 

A 

Although the above construction of T looks quite cornphcated, the 

procedure is in fact very easy using diagrams. We will illustrate this 

with example (1.7) . 

- 18 -



. ' 

~t.. ('l.'lg), 

We give the complete sequence of blow-ups of the limit tree (1.15). 

Each picture corresponds to the singularities of the blow-up tree of 

the indicated height. Note that the splittings in connected components 

exactly correspond to the vertices of the blow-up tree (1.11 ). 

A big 5, 7 etc, attached to an edge is the corrsponding value of the 

length function l. Small numbers a.1. etc, attached to corners are 

the corresponding values of the p function . So for example 

o~~ means lCp,q)=3, p(p,q;r)=2, lCr,q)=S . 
p r q 

ht = s 

............................. .. ... .. ... .... .. .... .. ............................................................ ..... 

ht = 4 
1 

0---0 

•••• • • • • •• •••••••••• ••• •••• • •••• • •••• •• „ •••••••••••••••••••• „ •••••••• ••• ••••• •• •••••••••• ••• •••••••••••••••••• • •••• 

ht = 3 

• •• • • ••• ••••• •••• • •••••••• • • ••••• „ ••••• • ••• • ••••• • ••• • •• • ••••••••••••••••••• ••••• •••••••• • • • ••••••••••••••••••• • ••• 

ht = 2 
1 

0--0 

............................................................................................................. ... ... 

ht = 1 

···················································································································· 
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Consider a rational surface singularity X of multiplicity m and with 

reduced fundamental cyde and let x be a general element of mx- As 

mentioned in (1.4), the space Y c X defined by x=O, is Isomorphie to 

the union of the coordinate axes in cm . Furthermore, X can be 

considered as the total space of a smoothing X -1L_. T of Y. As any 

deformation of Y. it is then induced from a versa/ deformation 

{.1---+13 of Y by a map j. This means that there is a cartesian diagram : 

x--{.1 

xl l 
T j • "B 

For our purposes 1t is of importance to have an explicit description 

of such a versal deformation of Y. lt seems that D. S. Rim was the 

first to have computed this (see CSchaJL Various other authors also 

have considered this problem (see CF- PJ , CAIJ, [St 21 ) . In the fol lowing 

theorem we describe the result . 

'?Moum (2.-1)1 

Let cm(m-1) be an affine space with coordinates apq (p , qE+f.,p;q) 

and let C{apq } be its local ring at the origin . 

Put 4)( p,q;r ) := apr -aqr p, q :i:r 

U ( p ,q , r ,s) := cp (r , p ;q)lf)(r, q;p)- 4)( s ,p ;q) lfl (S ,q; p ) 

p ,q ,r ,s pairwise different . 

tl: = ideal generated by the U(p ,q ,r ,s )cC{apq> 

Let "B c c m<m-1) be the space defined by tJ and let 07J = C<apq }/f) 

be its local ring. Furthermore, define elements 

Spq :=lf)(r,p;q)lf)(r,q;p) E ~ for any r:fp,q. 

Finally, let l1 c cm X 13 be defined by the equations : 

(yp+aqp><yq+apq> - spq = 0 

Then the map {.1 ---+ 13 is a versa/ deformation of Y. 
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'· 

As a corollary we get the following 

PuJHIM.tlon~ (2.2)' 

Let X be a rational surface singularity with reduced fundamental cycle. 

Let cm<m-l)+l have Coordinates X, Zpq• p,q E+f., P*Q· 

Then there exist functions 

spq 1 tp(p,q;r) E C{x} 

with <p anti-symmetric symmetric in the first two variables, 

that satisfy the Rlm Equatlons: 

R(p,q,r):= 

C(p,q,r;s) := 

spq - lf)(r,p;q)tp(r,q;p) = 0 

tp(p,q;s)+li)(q,r;s)+<P(r,p;s) = 0 

such that X is described by the Canon/ca/ Equatlons: 

Q(p,q): = 

Up,q;r): = zpr-zqr - tp(p,q;r)=O 

Furthermore, none of the Spq or li)(p,q;r) are identically zero. 

ptc"6: Let X be a rational surface singularity with reduced fundamental 

cycle. As already mentioned above, from the versality of the family 

{1--+13 and (1.4) we get a map j: T--+"8. On the level of rings we 

get a map 

·* J : C<apq} --+ C{xl 

Put apq(x) = j*(apq> e C{x}. Then define: 

zpq : = Yq + apq(x) 

ip(p,q;r)(x): = apr(x) - aqr(x). 

spq (x) := tp(r,p;q)tp(r,q;p) 

The Rim Equations and the Canonical Equations now follow immediately 

from (2.1). Because X is a normal surface singularity, Ox has no zero 

divisors. so spq is not identically zero. 
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The above system of equations for X is very simple and symmetric, . 

but does not give a minimal embedding in cm+l . An intrinsic way to 

describe a minimal embedding is as follows: 

1)~(2.3)1 

Let O=C{X,Zpq> be the local ring of cm(m-O+t . 

The second set of Canonical Equations, the "linear equations" 

Up,q;r) =O, define a smooth space germ /.. inside cm(m-l)+l of 

dimension m+1. We put: 

Ot..: = O/ideal generated by the Up,q;r). 

So X is minimally embedded in /.. and its ideal is given by the first 

Canonical Equations 

Q(p,q) = 0 in Ot.. 

We will most of the time consider Ox as quotient of Ot.., rather 

then of 0 . 

The space /.. can be identified with cm+t with coordinates x,yp in 

various ways . For example one can choose for every p E +t a q(p)E+f.\ {p} 

and put Yp:=zq(p)p · The linear equation Ur,q;p) = 0 can then be seen 

as a definition of the function Zrp as Zq(p)p +<p(r,q(p);p). By substition 

of all these definitions in the equations Q(r,s)= 0 we get a minimal 

system of equations in the coordinates X,Yp· These equations, however, 

are rather complicated and are not easy to handle. Furthermore, 

theorem (2 .7) shows that the coordinates zpq have a natural interpre­

tation on the resolution X of X. So it seems wise to work as long 

as possible with the Canonical Equations. 

Assume that <Spq, <P(p,q ;r)) satisfy the Rim Equations . Then: 

1) U(p,q,r,s) := <p(r,p;q)<p(r,q;p) -tp(s,p;q)tp(s,q;p) = 0 

2) V(p,q,r,s) :=<p(r,s;p)tp(s,p;q)-<p(s,r;q)<p(r,q;p) = 0 

Assume furthermore that the Zpq satisfy the Canonical Equatlons. 

Then: Any product zpr Zqs r:t:s can be written as a unique C{x}- linear 
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combination of zpr , Zqs and a function of x only. More precisely, one 

has: 

3) ZpsZqr-( cp(p,r;s)zqr + cp(q,s ;r)zp8 )+cp(p,r;s)cp(q,s ;r)-Srs = Q(r,s) in Ot. 

Special cases: 

4) Zps Zpr -( cp(p,r;s)zpr +cp(p,s;r)zps) = Q(r,s) in Ot. 

5) zprZrq -<p(p,q;r)zpq = Q(r,q) in Ot. 

p'lD°'' Clearly, U(p,q,r,s) = -R(p,q,r)+ R(p,q,s). Furthermore, a direct 

computation shows that 

V(p,q,r,s) = U(p,q,r,s)-C (r,p,s ;q)cp(r,q;p)-C(r,q,s ;p)cp(s,p;q) 

hence 2). The other things we leave as excercises to the reader. 181 

We now will prove the converse of proposition (2.2). 

Let a system of functions (Spq ,cp(p,q;r)) satisfy the Rim Equations, 

and let X c /.. be the space defined by the Canonical Equations. Then . 

X is a rational surface singularity with reduced fundamental cycle iff 

sp,q :j: 0 for all p:l:q(-H. 

"'"'°' t The Canonical Equations, belonging to a system of functions 

(Spq ,cp(p,q;r)) that satisfies the Rim Equations, define a space X that 

is the total space of a one-parameter deformation of Y. So from 

(1.4) it follows that X is rational with reduced fundamental cycle if 

the general fibre Xt, t small * 0 is smooth. The equations for Xt are: 

ZpqZqp -spq =0, spq=Spq(t)e C 

zpr - Zqr =f(p,q;r), f(p,q;r)=cp(p,q;rHth C 

and we may assume spq :1:0. The projective closure Z of Xt in IP:= 

IP(f..1x=t ©C.u)~IPm is given by the equations: 

zpqzqp-spqu2=o 

zpr-zqr=f(p,q;r).u 

We will show that Z is a rational nom1al curve of degree m, cf. 
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CWa1, Cor. 3.6J. Choose a p and a q *P e+t. Let (s:t) be homogeneous 

coordinates on IP1. Consider the map o: 1p1 --+ IPm ,defined by the 

following fonnulas: 

zpq = s2 II; zqp = spq .t2 II; u = stIT 

zpr = spr .s2 t.(II/Lr ) ; r :j.'.p,q 

Here II:=IIrt p,qLr; Lr:= spq ·t-f(q,r ;p ) s 

<Because zps (stp) and Zqp form a coordinate system for t., this 

suffices to define the map.) From the assumption that all the srs :j.:Q, 

(and hence, via the Rim Equations,f<r,s;t):j.:Q) it. follows thatall the 

Lr are different and unequal to s or t. Hence lm(o) is a rational 

nonnal curve of degree m. Furthermore, we leave it as a straight 

forward excercise to the reader to check, using the identities (2 .4), 

that Imfo) c Z. But because Xt is a flat defonnation of Y, it follows 

that Z is Cohen Macaulay of multiplicity m. Consequently, lm(o)=Z, 

and hence Xt is smooth. 

So a solution (Spq• <p(p,q;r)) of the Ri~ Equations deterrnine via the 

associated Canonical Equations a rational singularity X with reduced 

fundamental cycle. We will now show how to determine the resolution 

graph r of the minimal resolution TI: X---. X out of the Spq· lt will 

turn out that <p(p,q;r) and the Zpq also have a very natural interpre­

tation on X. First we need a definition: 

~(2.&)1 

Let X be a rational s urface singularity with reduced fundamental 

cycle, and dual graph cf the resolution r. For p ,qe+t we define a 

divisor Zpq on t he minimal resolution as foll ows: 

zC : = pq p (F,p;q)F 
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CZMoum ( 2 .? J 1 

Let X be a rational surface singalarity with reduced 

fundamental cycle, defined by the equations (2 .2) . 

Let n : X ---+ X be the minimal resolution. Then: 

A. (zpq o '11:) = Zpq 

B. The length function l:+tx+t ---+IN is detennined by: 

l(p,q) = ord (Spq) + 1 

C. The overlap function p :+tx+tx+t ---+IN is detennined by: 

p(p,q ;r) = ord( tp(p,q ;r)) 

<Recall that the length function determines r e• hence f, cf. (1.8)). 

pto"': We first note that the function Zpq is a parameter on the line 

Yq. Indeed, restricting the function zpq to the generic hyperplane 

section Y given by x = 0 we get the function Yq which is a parameter 

for Yq. lt follows from the eqaation Q(p,q)=O that the sapport of 

the divisor of zpq is contained in Y and that zpq vanishes with order 

= ord(Spq> on YP. Considerthe extended resolution graph re.see(1.5). 

The vanishing order of the function Zpq along the curves 

corresponding to the vertices of r e defines us a function: 

opq : v(f e> ---+IN 

From the above remarks it follows that: 

For all vertices v of r , consider adj(v) := { w: {v,w} an edge of re } , 

and Jet a(v) be the number of elements of adj(v). Because (;zpqo'Jt)·F 

= 0 for all exceptional curves F, it follows that opq is harmonic, i.e.: 

a(v) opq(v) = I opq(w) 
w ( adj(v) 

for all vertices V of r c r e· For such harmonic functions on a tree the 

fol lowing Monotonicity Principle holds : 

Every chain on which a harmonic function h is strictly monotonic, 

ca11 be ext.ended to a maximal such one, which has Jts end points in 

the end points of the tree r e· 
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Consider the chain C(q,p) from q to p in r e . We claim that for every 

chain C in r e which has only one vertex with C(q,p) in common the 

function opq is constant. If not, there is a subchain C 'of C (connected 

to C(q,p) on which opq is strictly monotonic, say increasing. By the 

above principle, we can extend C' to a maximal chain D on which opq 

is increasing. Let rE +t be the endpoint of D, so the vertex of r e on 

which opq 10 takes it maximum. In particular we have that opq ( r) > 

opq(Er ). But from equation (2.4) 5) : zpqzqr = tp(p,r:q)zpr it follows 

that: 

opq( r) - opq( Er ) = opr (r) -opr(Er ) -oqr (r) + oqr (Er) = 0 -1-0+1 = 0 

which is a contradiction. So opq must be constant on chains branching 

off from C(q,p) . From this it follows that the restriction of opq to 

C(q,p) is also harmonic, and hence the values increase with steps one. 

This proves A. and also B., because ord(Spq )=opq(p)=l(p,q)+1. 

Statement C. then follows most easily using (2.4)5). 

~-(2.8)1 

Some of the equations get very natural Interpretations in the light of 

(2.7). For example , the Rim Equation R(p,q;r) just means that the chain 

from p to q can be seen as being composed of C( p,d) and C( d, q), 

. where d is the "centre" C(p,q)nC(q,r)n ccr.p) of p, q and r. Because 

d is counted "twice", the order of Spq is lCp,q)+l, rather than l(p,q). 

We suggest to the reader to find similar Interpretations for the 

equations (2.4) 2) and (2 .4) 5). 

The results of (2.5) and (2. 7) imply the following: 

Given any r and any system of functions Spq , «ip(p,q ;r) E C{x} such that 

a) ord («ip(p,q;r)) = p(p,q ;r); ord(Spq>=l<p,q)+t 

b) The Rim Equations are satisfied 

then the Canonical Equations (2 .2) define a rational surface singularity 
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with reduced fundamental cycle and resolution graph r. We will now 

indicate how for a given r we can find all Spq and lf>(p,q;r) as above. 

/ügtld.tltm ( 2 .g) I 

Step l: Choose as in (1.8) a set A such that fe=f e(A). 

Step 2: Choose arbitrary functions Spqi E C{x} of order l1+1. 

Step 3: Choose functions <p(q1,qi+t ;p) of order Pi· 

Step4: Put 1f>(q1,qj;p) =:Ei~k<j<p(qk,qk+tiP) for i<j. 

Now ordx(<p(q1,qj;p)):;!:p(qi,qj;p) and for an open dense set 

lA. c ( C{x})m-2 of <p's in Step 3) _we have equality. 

StepS: Forget about the numbering of the q1. In the sequel r,sand t 

are distinct elements of +i. \ {p}. 

Step 6: Define lf>( p, s ; r) : = Spr I tp(r, s; p). Note that this division is 

possible because p (r,s; p) ~ p(s,p;r) by steps 4. 

Step 7: Define Srs : = lf>(p,r ;s)lf>(p, s; r). 

Stepß: Define <j)( s ,t;r) := -{<j)(p,s ;r) +IJ)(t,p;r)} 

17to"': 

Necessary: 

If the cocycle conditions C(r,s,t;p) are to be satisfied for all r.s and 

t, then we have no other choice for <p(qi ,qj ; p) then the one in Step 4. 

Because the order of a lfl has to be the corresponding p, we have to 

restrict the IJ)(qi,qi+l ; p) of Step 3) to the open dense set LA.. 

Sufficient: 

We have to show that for this choice of tp's and S' s all the Rim 

equations are satisfied. lt suffices to show that: 

U(s,r,p,t) : lf>(p,r;s)lf>(p,s;r) - IJ)(t,r;s)tp(t,s;r) = Ofor t:l=p. 

By the definition in Step 8: 

IJ)(t,r; s) IJ)(t, s;r) = {IJ)(p,s ;r) + tp(t,p;r)} { tp(p, r ;s) + IJ)(t ,p ;s)} 

So we have to show that: 

.p(p,s ;r)tp(t,p; s) + tp(t, p;r).p(p, r ;s) + <p(t,p ;r).p(t,p ;s) = 0 

By Step 6 we have that the left hand side is equal to: 
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-1 -1 -1 -1 -1 -- 1 SprSps {lf>(r,s;p) lf)(t,s;p) + lf)(t,r;p) lf>(S,r;p) + lf)(t,r;p) lf)(t,s:p) } 

· Now the last two terms inside the brackets is equal to 
-1 , -1 

lf)(t, r; p) (<f>(s, r; p) + <f>(t,s ;p)-1) = 
<f>(t,r;p)-l{ <j:>(t,s ;p)+<f> (s,r;p)}<j:>(s,r;p)-llf>(t,s ;p)-1 = 

-1 -1 
<P (s ,r; p) <j:>(t, s; p) by 5tep 4 . 

Now it fol lows easily that the Rim equations are satisfied. 

~le (2.-10)1 

Let X be a rational surface singularity with dual graph of resolution 

as in example (1. 7). We will determine the explicit equations of X in 

c6. We will follow the steps of (2 .9): 

Step 1) We take p = p, q1 = q, q 2 = r, q3 = s ,q4 = t. We relabel them as 

0 1 2 3 4 

Thus l 1 = 9 

Step 2 and 3) We choose 

l 2= 11 

l3=13 

l4=12 

Pt= 7 

P2=11 

p3=6 

Sot = x10 

502= x12 

. 503 = x14 

504= x13 

<p(1,2;0)=x7 

<p(2,3;0)= x11 

<p(3,4;0)= x6 

Step 4) Using the cocy le condition we get: 

<p(1,3;0) = x7 +x11 

<P(2 ,4 ;0 )= x6 +x11 

Step S and 6) Compute <PCO,i ;j) by division. The result is: 

<pC0,1;2) = - x5 <p(0,1 ;3) = - x 7 /(1+x4) 

<pC0,2;1) = x3 lf>C0,2;3) = -x3 

lf>C0,3;1) =x3/(1+x4 ) lf>(0,3;2) = x 

<PC0,4;1)=x4/C1+x+x5) lf)<0,4;2) = x6/et+x5) 
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<PC0,1 ;4) = - x 7 /(t+x+xS) 

c.pC0,2 ;4) = - x7/(1+x5) 

<P<0,3 ;4)= -x7 

<pC0,4;3)= x8 



lt is now possible to write down equations for X minimally embedded. 

We choose as coordinates x , z01 , z02 ,zo3.zo4 and z10 

We get the following ten equations: 

Q<O ,O : zo1 z10 - x10 = 0 

Q(0,2): zo2<z10 +x7)-x12 =O 

Q<0 ,3): zo3<z10 +x7 +x11) - x14 =O 

Q(0,4 ): zo4 (z10 + x6+x7 +x11)-x13 =O 

Q0 ,2) : 

Q(2,3) : 

Q(3 .4) : 

Q(t,3): 

Q(2,4) : 

Q(1 ,4) : 

zo1zo2 + xs zo1 - x3 zo2 = 0 

zo2 zo3 + x3 zo2 - xzo3 = 0 

zo3zo4 +x7 zo3 - x8 zo4 = 0 

zo1zo3 +( x7 /(1+x4) )zo1-( x3/(1+x4) )zo3 = 0 

zo2zo4 +( x7 /(t+xS) )zo2 - ( x6/<t+x5) )zo4 = 0 

zo1zo4 +( x7 /(t+x+xs) )zo1 -( x4/(1+x+x5) )zo4 = 0 

As solutions (Spq•lfl (p,q;r)) to the Rim equations correspond to Rational 

singuiarities with reduced fundamental cycle, one expects Families of 

solutions to the Rim equations to correspond to flat deformations of 

X. Of course, this is the case and completely trivial. 

Let X be be described by the canonical equatons (2.2) belonging to a 

solution ( Spq ,<P (p ,q ;r)) of the Rim Equations. Let 

Xs ---+S 

be a flat deformation of X over S . Then there exist functions T pq , 

4i (p,q ;r ) E 0 5 {x} that satisfy the Rim Equations T pq - tlJ(r .p :q)tjJ(r,q ;p) 

=O and such that Xs -----+S is isomorphic to the deformation of X 

described by the Canonical Equations belonging to (T pq , \)J(p,q;r)): 

zpq Zqp - Tpq = O; zpr -zqr -tji(p,q;r) 

Conversely, any such system (T pq , tji(p ,q ;r)) determines a flat defor­

mation of X. 
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prc~1 Xs can be considered as a deformation of Y over SxT by lifting 

the function xeOx to Oxs. So it is induced by a map Sx T --+13. Such 

maps correspond exactly to solutions of the Rim Equations in the ring 

Cotolü.tttt (2.'12) I (cf. CKo ) , 3.4.5 , 3.4 .9) 

The class of rational surface singularities with reduced fundamental 

cycle is closed under deformation . 

pto~: Obvious by (2.2),(2.5) and (2 .11) . 

The simple description of flat defonnations of X in terms of pertar­

bations of the (Spq,ip(p,q;r)) as in (2.11) , will also be used in §4. 

Furthermore , lemma (2 .11) can be used to find an interesting 

deformation that will be used in §3 and §4. 

Let X be a rational surface singularity with reduced fundamental cycle. 
A 

Consider the first blow-up b : X ---+X . Let x1, ... , XP be the singular 
A 

points of X. Then there exists a one- parameter deformation X5 of X 

on th~ Artin component such that Xg for s not equal to zero has p 

+ 1 singular points Isomorphie to X1, .. .. , XP and the cone over the 

rational normal curve of degree m(X). 

proo61 

We look at the equations of X given by the Canonical Equations (2 .2). 

When we write 

and put 

tp(p ,q;r) = xip(p,q ;r), 

Spq = x2 S pq 

q,Cp,q ;r ) =Cx- s )ip(p,q;r) 
2-Tpq = (x-s) Spq 

then the system (T pq• tlJ (p,q;r)) satisfies t he Rim Equations . Hence by 

(2.11) it corresponds to a one- parameter deformation of X, given by 

the equations : 
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2-
ZpqZqp = (x-s) S pq 

zpq- Z~- = (x-s)~(o.a:r) 41 ' • , , , 

For s :i:O, s sufficiently small, one has a singularity at x=s, :Lpq =O \lp.q , 

which by an application of (2.7) can be recognized as the cone over 

the rational normal curve of degree m(X). 

At x= 0 one performs the coordinate transformation: 

zpq ---+ (x-s) zpq for all p and q 

and upon dividing the quadratic equations by (x-s)2 and the linear ones 
A 

by (x-s) one gets the equation of X in the x-chart , hence has singu-

larities as asserted. lt is a bit boring to check that these are all 

singularities on the general fibre. To show that this deformation is 

on the Artin- component we show that it has simultaneous resolution. 

One blows up in the curve zpq = 0, and x= s, to see that for s * 0 one 

resolves the cone over the rational normal curve, and for s= 0 one 
A 

regalns X. As after one blow up one is left with a trivial deformation, 

which obviously has simultaneous resolution, it follows that the above 

deformation has simultaneous resolution. 

~wutd: (2.14) 1 By openness of versality it follows that there exists 

a one parameter deformation of X on the Artin component, with for 

every vertex v of BT(X) a rational normal curve of degree m(v) on the 

general fibre. We leave it to the reader to write down such a deformation 

explicitely. 
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In this paragraph we study the modules r:k and T~ of a rational surface 

singularity X with reduced fundamental cycle. These modules, which 

are finite dimensional vector spaces over C, play an important role 

in the deformation theory of X: T~ describes the infinitesimal 

deformations and Ti is the space that contains all the obstructions 

to extend given deformations to one defined over a slightly bigger 

space. We refer to [Art 2] and [Schi 2J for the basic facts about defor­

mation theory. Let us recall the definitions of T* and T~ for a 
. . N 

general space genn X c C . Let X be described by an ideal I=ff1,„.,fp) 

c O:=C<x1 ,„ „xN} and put Ox = 0/1. Consider the free module 

'] =ffii~l O.e1 on generators ei, i=1,„„p, and define "{e. to be the kernel 

of the natural map '] ~I induced by e1 ......,..fi . Hence we have an exact 

sequence: 

0 --+~ --+'] --+I --+0 

So ~ is the module of relations between the generators f 1 of the ideal 

1, and it contains a sub-module "fi!o, generated by the Koszul-relations 

fi ej -fj ei . Taking Horn we get a map (where Hom=Hom0 ) : 

HomC'J,Ox) --+Horn(~ ,Ox) 

The image this map is contained in the sub-module 

Ax:=Hom~.Ox>· 

We let et be the induced map et: Hom('J,Ox) --+Ax· 

The kemel of this map et 

Ker(cd=Hom(I ,0x)=Homx0/12,0xl=: Nx 

and is usually called the normal module of X in CN. 

The obstruction space is by definitton the cokemel of et. 

Coker(et) =: Ti 
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Denoting the vectorfields on cN by 0, there is a natural map ß 

ß: e®Ox --+Nx; .&®t t-+(ft-+.&(fl) 

The space of infinitesimal defonnations is by definition: 

Coker(ß)=: T~ 

So elernents of both r 1 and r 2 are represented by classes of 

homomorphisms: For r 1 : hornomorphisms 1=917{ --+ Ox 

T2 : homomorphisrns '/{f'/{o --+ 0 X . 

lt is our aim to· describe T ~ and T ~ as explicit as possible in the 

case that X is a rational surface singularity with reduced fundamental 

cycle. In 3.A. generators for Tt and r 2 are constructed directely in 

terms of the equations of X. Furthermore, dimension formulae are 

given. 3.B. is devoted to the C{x} module structure is studied. Moreover 

a second set of generators for r 2 is constructed, and C- bases are 

given. 

a.,A. 

We start with a description of the sequence ( *) in our case . 

~/~UJ.ort (3.'/) I 

Let X be given by the Canonical Equations Q(p,q)=O 

as a subspace of the smooth space /.. as in (2.3). 

Let 1 c 0:= Ot,. be the ideal generated by the Q(p,q) as in (2.3). 

Let 7=EBp:i:q~ 0.Cp,q] the free rank (~)-module on symmetric 

symbols Cp,ql=Cq,p], p*q. and let 7 --+ 1 be the map induced by 

[p,q] .-+Q(p,q). 

Let '/{ c 7 be the sub-module generated by the elements 

Cp,q;rl := zrp[q,rl- zrq [p,rl +11>(p,q;r) [p,ql 

(p,q ,rdistinct elernents of +t ; remark that Cp,q;rl+[q,r;pl+Cr,p;ql =O). 

Then the sequence 0 --+ ]{ --+'J --+ 1 --+ 0 is exact. 
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l"ZO"' 1 In other words, the [p,q;rl generate the module of relations. 

A direct computation of 

zrp Q(q,r)-zrq Q(p,r)+tp(p,q ;r)Q(p,q) 

gives, after several applications of linear equations, the expression 

- ( zrpR(q,r,p )-zrqR(p,r ,q )+tp(p,q;r)R(p,q,r)) 

where R(p,q;r) :=Spq-tp(r,p;q)tp(r,q;p) is the Rim Equation as in (2.2). 

So we see that (p,q;rl is a re/ation exactly because the Rim Equations 

hold. That these [p,q;rl actually generate the module of all relations, 

follows from the fact that [p,q;r] is a lift of the relation 

Yp(YqY r )-yq(YpYr) 

between the equations of Y, and these relations are easily seen to 

generate the relation module for Y. 

For the rest of this section we fix a limit tree T for the resolution 

graph f of the minimal resolution n :X--+ X. as in (1.C). 

~ta.a>1 

Let T be a limit tree and let p and q be two different vertices of T . 

* We dcfine sub-sets of +t as follows: 

L(p,q) = {n+f.:peC(r,q)} 

~(p,q) = {se+t: q eC(p,s)} 

,M.Cp,q}=+t-L<p ,q}-~(p,q) 

Here C(p,q) denotes the chain from p to q ( endpoints included) in the 

limit tree T. 

• We define numbers as follows: 

l(p,q) = max { p(a,q;p): a e !Cp,q) } 

r(p,q) = max { p(p,c;q): c e jl{(p,q) } 

s(p,q) = max { Hp,q), r(p,q) } 

m(p,q) = min { p(p,q;m): m e,M.Cp,q) } 

Usually, if no confusion is likely, we abbreviate !Cp,q) 

to !, etc. We think of !, j1{ and ,M. as the sets of vertices of T to 
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the Jeft , the right or between the vertices p and q„ respectively. 

Notice that p E /.(p ,q) and q € ~(p , q) , and that the vertices of ,M. are 

not necessarily on the chain C(p,q). ,M.= <l> means that {p,q} is an edge 

of T. 

~ta.aJ, 

A homomorphisrn h : 7 --+Ox .is called a Jeft-right homomorphism 

(with respect to the pair p,q) , if: 

h( (r,sJ) = 0 r , s € t. U,M. or r , s E ,M.U~ 

lf we denote by [r,slv the homomomorphism 7 --+ OX dual to the 

inclusion Ox --+7; 1 i-+Cr,sl (so Cr,sr< Ca,c])= or,a 85 ,c + or,c 85 ,a>, 

then such a left- right hornornorphisrn h can be represented as: 

; hrs :=h(Cr,sl) E Ox 

?>~taAJ' 

We call a relation [a,b ;c] separated if the elements a , b and c belong 

to different sets t. ,,M.,'f{ and non-seperated if it is not seperated. 

We let ~ns c ~ be the sub module generated by the non- separated 

relations [a,b;cJ. 

~(3.5)1 

Let p and q be vertices in a limit tree Tand h : 7 --+Ox a non-zero 

left-right homomorphism with respect to p and q . 

Then the restriction of h to ]e..ns c ~c 9 is zero if and only if 

the following identities are satisfied for the values hrs 

L(a,b ,c) : rk ( ~ac Zca Zba ) ~ 1 
bc Zcb tp(c ,a ; b) 

. d . k( had Zad Zcd ) ~ 1 Rta, ,c) : r h 
ac Zac tp (a,d ;c) 

for all a , b € t. and all c , d € '/{. 
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prcc61 
One has h([a,c;ml) = Zmahmc - Zmchma +ip(a,c;m)hac . But because 

h is assumed tobe a left-right homomorphism, we have hmc=hma=O. 

For relations [r,s;tJ with the property that {r,s,tk.LU/U or {r,s,t}cptU~ 

it is trivially true that h([r,s;tl)=O for any left-right homomorphism . 

The other non-separated triples to consider can be divided into four 

classes (we always assume a,b E /.. and c,dE~). 

1: [a,b;cl; h(Ca,b;c])= Zcahbc- Zcbhac+O 

II: [c,a;bl; h(Cc,a;bl)= 0 - Zbahbc+ip(c,a;b)hac 

IIl:[d,c;a]; h([d,c;al)= Zad heb - Zachad + 0 

IV:[a,d;c]; h([a,d;cl)= 0 - Zcdhac + ip(a,d;c)had 

The first two equations are recognized as two of the minors of the 

matrix for L, and the last two as two minors of the matrix for R. 

<The third minor is the identity (2.4)5), independent of b.) 

CoeolUtttf (3.o) I 

A left- right homomorphism h : 7 --+ Ox with the property that 

h(~5) = 0, is detennined by its value h([p,ql)=hpq· 

Conversely, any hpq E Ox such tbat the rational functions haq, hpd 

and bad (defined by the equations (A), (B) and (C) below) are actually 

in Ox, defines a left-right homomorphism b with h<~s )=0 . 

pzcc61 From the above lemma, h(~5)=0 is equivalent to the sets of 

equations L, R. We now use these to compute the coefficients had 

from hpq: 

Frorn L(a,p,q) haq = hpq .zpa/ip(q,a;p) (A) 

From R(p,d,q) hpd = hpq .Zqd/ip(p,d;q) (B) 

From R(a,d,q) had = haq. Zqd/ ip(a ,d;q) (C) 

Frorn L(a,p,d) : had = hpd . Zpa/ip(d,a;p) (D) 

So we expressed all coefficients had in terms of hpq . 

We note that the above system of equations is overdetermined; for 

example, the two expressions for bad (C) and (0) have to be equal. 
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But this comes down to lf)(q,a;p)lf)(a,d;q) = 1f>(p,d;q)ip(d,a;p), which is 

the identity V(p,q,d,a) of (2 .4)2). The other compatibilities are checked 

in a similar way. 

~fa.'TJ1 

Let p e +t. We define a function J..=J..(p) :+f.x+t--+ Q<Ox> as follows: 

* For r,s and p different we put : 

Ars = Zprzps/tp(s,r;p) = - )..sr 

• For r:l=p we put : 

Apr = Zpr = - Arp 

• For all r e+f. we put: Arr = 0 

1.)~ /~ (a.B) 1 

Let p e +t. Define coefficients Cy.5 = Cy.~(p) as follows: 

• For r,s and p different: 

• For r*p: 

* For all r e +t 

Then one has: 

Crs = (1f>(p,r,s)/tp(s,r;p}) 

Cpr =O ; Crp=1 

C =O rr 

If p e C(r, s), then Cy.5 e C{x} and Ars e Ox. 

tno"61 Consider the case that r,s and p are all different. Then, by 

(2.4) 4) one has: 

"rs = ( <p( p,r;s)/.p(s ,r; p) )zpr + ( .p(p,s ;r)/.p(s,r;p) )zps , 

and by property (1.12) 1) and 2) of the limit tree we know that 

p(s,r ;p) ~ p(p,s;r); p(s,r;p)~p(p, r;s) 

if p e C(r,s) . So indeed Ars is holomorphic if p e C(r,s). 

The other cases are trivial. 

1.)~ !puJIOM.tl.o" f a.g J' 
Let T be a limit tree, and p:l=q e +t vertices. Then there exists a 

unique left-right homomorphism o = o(p,q) : 7--+ Ox with the 

following properties : 

1) O ( [p,q]) ;: Zpq 

2) o( ~5) = 0 
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Furthermore , o has the following additional properties : 

3) o<Ca,c]) = 1' ac 

4) o([a.c;m])= .p (a,c;ml"ac 

o([m,a ;c])= Zcm"ac = - .p(m,a;cH-am 

o([c,m;a])= -zam Aac= - lj)(c,m;alAmc 

(in these formulae: a,b e .!(p,q); me1'f(p,q); c,d e ~(p,q)) 

P'U'o& : We apply lemma (3 .6) to compute the values of o starting 

from o([p,q]) :=zpq . We find: 

(A) o([a,q]) = Zpq·Zpa/<P(q,a ;p)= 1'aq 

(B) o([p,d]) = zpq .zqd/<P(p,d;q)= zpd = 1' pd 

(D) o([a,dJ)= zpd·zpa/.p(d,a ;p)= " ad 

By (3.8) these t-ad are in Ox, because by construction one has 

p e C(a,d).This proves the existence of the o. The values on the various 

terms are easily checked to be as stated. 

~11"'~ltLon (3.10) 1 

Let T be a limit tree, and p:fq e +t vertices. Let f e C{x} a function 

with ord(f) = s(p,q), where s(p,q) is defined in (3.3). Then there exists 

a unique left-right homomorphism Ft:(p,q) : 7 --+ OX with the 

following properties : 

1) t([p,q]) = f 

2) •C7i;i5 l = o 
The values on the other [r,s] are then given by: 

3) t([a,q]) = f. zpa/.p(q,a;p) 

tff p,d]) = f. Zqd/ .p(p,d;q) 

t([a,d]) = f . Zpa .zqd/.p(q,a ;p).p(a.d ;q) 

(As always, a,b E .! and c ,dE "fl.., .) 

l"l"o& 1 The values on [a,ql and Cp,dl are in Ox, because by definition 

of s(p,q) we have ord(f)=s(p,q)~p (q,a;p) , p(p,d;q). 

Furthermore, we have Zpa Zqd =<p(q,a;d)zqa +.p(p,d;a)zqd as in (2 .4)3) 

By property (1.12) 1) of the limit tree we have: 
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p(q,a;d)~p(a,d;q) ; p(p ,d;a)~p(d,a;p) 

By property (1.12) 2) of the limit tree we have: 

p(d,a;p) = p(q,a;p) 

Hence ord( f .tp(q,a; d)/tp(q,a;p)llJ(a,d;q)) ~o 

ord( f.11J(p,d;a)/11J(q,a;p)11J(a,d;q))~O 

This proves that t( Ca,dl) e Ox 

We will now construct out of these o and t homomorphisms our 

generators for r 1 and r2 . 

•For each edge {p,q} e e(T) we have 3 homomorphisms: 

o(p,q) , t(p,q)=t(q,p) , o(q,p) e HomH,Ox>=Nx 

So in total we have defined 3(m-1) normal module elements. 

•For each ordered pair (p,q) such that {p,q} not in e(T) we have a 

homomorphism O(p,q) = o(p,q)/xm(p,q) e Horn(~/~, Ox> = Ax 

So in total we have (m-t)(m-2) such homomorphisms. 

ptoc6 : The first thing to see is that when {p,q} e e( T), then the set 

/f-tCp,q) is empty ; there are no separated relations and so ~s = ~ . 

Hence in these cases o(p,q) and t(p ,q) vanish on all relations, so are 

in fact in HomO,Ox ). From the values oft one sees immediately that 

t(p ,q)=t(q ,p). 

Now if {p,q} is not an edge of T, then the values of 0=0(p,q) on the 

separated relations are given in (3.9): 

.o([a,c ;ml) = lj)(a,c;m) .Aac 

o([m,a;c]) = -lj)(m,a;c) .Aam 

affc,m ;a]) = -ip(c,m ;a).Amc 

where :X. rs is as in (3.7) . Now p e C(a,c) and p e C fm,a ), so :>..ac 

and >-.am are actually in OX , by (3.8) . 

By property (1.12)1) and 2) of the limit tree: p(a,c;m)=p(p ,q;m)~m(p,q) 

By property (1.12)1 ) and 2) of the limit tree : p(m,a;c)<:p(a,c ;m) <:m(p ,q) 

Because Ca ,c;ml + Cm,a;c]+[c,m;al = 0, it follows that the values of the 
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restriction of o(p,q) to the relations ]< c 7 are all divisible by xm(p,q). 

As these o(p,q) obviously vanish on 'f<o, we get by division elements 

O(p,q) eAx. 

These constructed elements of Nx and Ax give rise. by taking classes. 

to elements of T~ a~d Ti respectively. In order to keep notation as 

simple as possible, we will not make notational distinction between 

these elements in the Horn or in the T, but we will say where the 

element is to be considered if any ambiguity arises. 

We will now show that our homomorphisms project to generators 

for T~ and T~ . The idea is to use the slicing sequence for our map 

x:X --+ T, representing X as the total space of a flat deformation 

of Y. 

pr.oJ!IO.sl.tüm (3 ••. )1 (see also CB-C]) 

Consider the exact sequence 

T
1 x. 1 1 ex 11 12 x. 12 ß 12 

·-+ X/T--+ X/T-+ Y-+ X/T ~ X/T ~ y--+ ... 

1) By CG-LJ, 2.2 and CGrJ one has dimUm(cx))=dim(smoothing component 

on which the smoothing of Y occurs ) = 2m-3. 

2.) The nonilal module Ny is generated by homomorphisms 

npq : y pY q i--+ Yp , rest i---+ 0 

One has: '"y · T1y =O. 

From this it follows that: µ<T~;r)=dim(lm(cx))=2 m-3. 

3) The module Ay is generated by the homomorphisms 

apqr: Cp,q;r] t--+yp; [r,p;q] i---+O; [q,r;p] 1-+ -yp 

One has: my. T2y=O. 

' lt follows that µCT2 X/T)=dim(lm(ß))=dim(T1y>-dim0m(cx)) 

= m(m-2)-(2m-3)=(m-1)( m-3). 
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1 
4) One has: T X/T = Coker( 6 rel @ Ox --+ Nx) 

T1X = Coker(0 ®0x --+Nx) 
1 1 

so NX --++ T X/T-H T X 

2 "' 2 
T X/T --.T X 

(We use µ(M) to denote the number of generators of a module over 

a local ring.) 

CoullA'f ta.1aJ , 

o µ<Nx>~3m-3 

2) µ(Ax)s:(3/2Hm-1Hm-2) 

3) µ(T1 x>=2m-3 or 2m-4 . 

ptoo61 As the module 0rel _of relative vectorfields has m generators 

and T1X/T has 2m-3 generators by (3.12), itfollows that Nx has at 

most 3m-3 generators. Similarly, as the number of generators of 

Hom(9, Ox ) is clearly m(m-1)/2, and the number of generators of 

T2x is (m-O(m-3) by (3.12), it follows that Ax has at most (m-tHm-3) 
. 1 

+ m(m-1)/2 = (3/2Hm-1)(m-2) generators. Finally, T X is the quotient 

of r\11 by the module generated by the image of the vectorfield ox. 
1 1 If c) x map to a generator of Tx;T . Tx is generated by 2m-4 elements, 

otherwise the number of generators is 2m-3 . t1SI 

We shall see below that the inequalities in 1) and 2) are in fact 

equalities. Also, we will give a simple criterion to decide between the 

two alternatives of 3). 

1'co'1'Jsltl.o" t a.14 J ' 
Consider a rational surface singularity X with reduced fundamental 

cycle, and with equations as in (2 .2). Let T be a limit tree for X, and 

let o(p,q), t(p,q) , Q(p,q) the homomorphisrns as defined in (3.11) . Then 

one has : 
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1) the 3( m-1) homomorphisms 

o(p,q), t(p,q)=i:(q,p), o(q,p) , {p,q}Ee(T) 

form a minimal set of generators for Nx. 

2) the 3 (m-1Hm-2)/2 homomorphisms 

O(p,q), [p,qlv=Cq,pr,!'Hq,p) , {p,q} not an edge of T 

form a minimal set of generators for Ax. 

' . 
Consequently, the o 's and t 's generate r\{ and the 0 's generate T ~. 

pto~1 Let R be the composition Nx-H NxlmxNx ~ Nylmy.Ny­

Consider the C-vectorspace 

ß = Gl{p,q}Ee(T) (C.o(p,q)GlC:rCp,q)GlCC.o(q,p)) c NX 

As d.imcCß) = 3m-3, and the number of ge~erators of Nx is by (3.13) 

at most 3m-3, it suffices to show that the restriction of R to ß is 

- injective. Let n= LA pq o(p,q)+B pq i:(p,q)+A qpo(q,p) eß and assume 

that ft(n)=O. Let {a,b}Ee(T). Using (3.9) and (3.10) we see that only 

three terms contribute to n([a,b]): 

n([a,b]) = Aabzab + B abf ab +Aha zba 

where fab EC{x}, ord(fab)=s(a,b)~t, see (3.2). 

So we get: 

ft(n)( Ca,bl) =Aab·Yb+Aba·Ya· 

2 
From (3.12) 3) it follows that h([a,bl) emy for any h E my Ny . So Aab 

=Aha =O . To handle the coefficients Bab• we choose for all {a,bheCT) 

a c E +t such that s(a,b)=p(a,c;b) or s(a,b)=p(b,c ;a). Without loss of 

generality we can assume s(a,b)=p(a,c;b), and {b,c}ee(T). Again, by 

the formulas of (3.10), we have: 

nffa,c])= Bab i:Ca,b)(Ca,c]) +Bbc t(b,c)([a,c]) 

=Bab·fab· zbc/llJ(a,c;b) + Bbc.fbc .zba /lp(c,a;b) 

Hence. putting x=O: 

RCnH Ca,cl) = Bab·( f ab/llJ(a,c;b )cm.yc + Bbc·( fbc/<P(c,a;b) )cm ·Ya 

Now the coefficient (fab/<4)(a,c;b )COH:O, by the choice of c. As before, 

we conclude that Bab =O. So from R( n)=O it follows that n=O and hence 
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the first part of the theorem is established. 

The proof of the second part follows the same kind of pattern: 

Let S be the composition Ax --+-+Ax/mxAx --+AylmyAy. 

Consider the C-vectorspace 

,A = EB{p,q}not e e(T) (C .Q(p,q)EBC.[p,ql vEBC.Q(q,p)) 

As dimc<,4>=3 (m-lHm-2)/2 and the number of generators of Ax is 

by (3.13) at most this number, it suffices to show that the restriction 

of S to ,Ais injective. Let a=LApq Q(p,q)+Bpq (p,~lv+Aqp OCq,p) and 

assume that S(a) = 0 . Fix r,s e +t. We will show that Ars =Brs =A5 r=O 

from the induction hypothesis Aab=Bab =Aba=O for all a,b e C(r,s), 
1 

{a,b} not equal to {r,s}. Choose an m e C(r,s) such that p(r,s;m)=m(r,s). 

From the induction hypothesis and (3.9), (3.11) it follows that only 

three terms contribute to a([r,s; m]): 

a([r,s;m])= Ar
5

0Cr,s)([r,s;m])+Brs [r,slv( [r,s ;m])+ A
5
r O(s,r) ([r,s;m]) 

=Arslf>fr,s;rn)/xm(r,s)zrs + Br
5

<p(r,s;m) +A
5

r<p(r,s;m)/xm(r,s) z
5
r 

Hence, S(a)([r,s:m])=(Ars y
8

+A
5

r Yr).u, where u=( <p(r,s;m)/xm(r,s))CO> 

is non-zero by the choice of m. From (3.13)4) it follows that 

h([r,s;m]) E m~ for all h e my Ay. So Ar5=Asr=O. As S( Cr,s lv) is equal 

to (the class mod my) of .the homomorphism Cr,sr eAy. and this is 

part of the minimal generating set of Ay, we also find that Brs =0. 

So S(a)=O it follows that a=O and so the second part of the theorem 

is proven . 

So we have concrete sets of elements minimally generating Nx and 

Ax- By.(3.12), certain relations between generators arise, when projected 

to r1 resp r 2. lt is of interest to make these relations explicit (see 

(3.20)) , but we can find dimension formulae without knowing these 

relations. The following proposition seems to be an essential property 

of the defonnation constructed in (2.13) , 
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Pu~„ t a.-t5J, 
Consider the one-parameter Xs --+ S of X as in (2.13) and the 

associated long exact sequence: 

--+ „. 

Then ex and ß are surjective. 

1'to"6 1 We only have to lift generators of T ~ and T~ to the relative 

situation. By proposition (3.14) the homomorphisms defined in (3 .10) 

and (3.11) are such generaters, defined universally in terms of the 

.p(p,q;r) and the limit tree T. The deformation Xs --+S is described 

as in (2.13) by replacing 1f>(p,q;r) by ( (x-s)/x }rCp,q;r). Making the same 

replacement of .p's iD' the definition (3.10) ( together with the 

replacements f -+( (x-s)/x)fl- and in (3.11) (together with xm(p,q) -+ 
( (x-s)/x )xm(p,q» we first notice that all divisions occuring are in fact 

possible. The fact that these lifted homomorphisms in fact live in 

Nx5 and Axs is formally the same as for the special fibre X. i8I 

Part A. of the following theorem is a generalization of a result of 

Behnke and Knörrer rn-KJ. Special cases were also conjectured by 

Wahl CWa2J,6.7. Part B. generalizes a theorem of Behnke and 

Christophersen CB-CJ, S.11. 

Let X be a rational surface singularity with reduced fundamental cycle. 

Let n: :X --+X be the minimal resolution of X. Then: 

A. dim<T
1
x) = Lv€BT(4 ) (m(v)-3) + dimCH1CX,0x)) 

B. dim(T~)= Lv€BT(4 ) (m(v)-1) (m(v)-3) 

Here BT(4) ls the set of vertices of the blow-up tree BT of X with 

multiplicity :<:4 . 
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1''l'"'': 
We consider the deformation of (2 .13) . 

The proof of B. is very simple: by surjectivity of ex and ß from (3.15) 

we have that T2Xs'S is flat and compatible with specialisation. Hence: 

dim(T~)=dim<T2Xs)=L~=l dim<T
2
xk) +dim<T2cm) 

where Xi . X2 .. . .. XP are the singularities of the first blow-up, and 

Cm is the cone over the rational normal curve of degree m. As 

dim<T2c) = (m-t)(m-3) (see CAml, CB-C]),the result follows by induction. 
m 

We now turn to the proof of part A. For a rational singulartiy, 

denote by cod(X) the codimension of the Artin component in T1X 

As H1 (X,0x) describes the deforrnations of X. which map down to 

the Artin component, A. is equivalent to the statement 

cod(X) = Lve BT<4) (m(v)-3). 

As cod(Cm) = m-3. (see [Pi J. Sect.5). we have to show that 

cod(X) = Lk~t cod(Xk) +cod(Cm) 

The map o: of (3.15) surjective, so by CG-Ll, 2.2, dim CT1x ) = dimClm(cx)) 

is the dimension of the Zariski-tangent space at a general point of 

j(S), where j:S-+ the base space of a semi-universal deformation of 

X inducing the one parameter deformation Xs -.+S. As j(S) lies on 

the Artin component. which is weil known to be smooth, it follows 

by an easy application of openness of versality that the codimensions 

are additive. 

The deforrnations of X can be divided into those for which all the E1 

can be lifted and those that change the resolution graph topologically. 

To be more precise, there is an exact sequence: 

From this one obtains after taking cohomology the dimension formula: 
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dirnCH1CX,0x)= :L<-Ei2 -1) + es(X), where 

es (X) :=dim( ES) 

ES := H1cX.ex<IogZ)) 

Here ES is the tangent space of the fu11ctor of equisi11gu/ar defonnations 

in the sense of Wahl (see CWa3]) . A fundamental theorem of ]. Wahl 

states that the natural map ES ~ T~ is injective( CWa3], thm.4 .6). 

-n~ta.1?)1 

We put T ~op = T ~ I ES , where we identified ES with its image in T ~. 
We will refer to T~op as the topological defonnations. 

The number es(X) =dim(ES) could be called the modality of X. 

The modality es(X) is a rather subtle invariant and is in general not 

determined by the (analytic type of the) resolution graph. Taut singu­

larities have es(X)= 0, and there are lists of those ([Lauf]) . 

~{.e ( 3.18) I 

We take again our example (1.7) . In (1.11) the blow-up tree is given. 

We find: 

dtm<T1x> = 2 + t + t + 24 = 28 

dim(T~ )= 8 + 3 + 3 = 14 

(According to CLaufl, Xis taut, so es(X)=O.) 

By (3.16) the dirnensions of T ~op and T~ are discrete invariants of 

X. that can be determined from the resolution graph. On the other 

hand, (3.14) gives us generators for T ~op and T ~ as Ox-modules, and 

hence as C{x} modules, because myT\. = 0 for i =1,2, see (3.12). So one 

expects to be able to give concrete C-vector space bases for these 

spaces. To do this, one needs to understand the relations between the 

generators, and for this it is convenient to have simple recognition 

criteria for elements of Nx and Ax: 
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~(1.419)1 

Let M be an Ox-module. A subset ScM is called determining if if for 

any homomorphism ex:M --+ Ox we have 

ex1s = 0 =9 ex = 0 

(or what is the same, Hom(M/(S),Ox>=O). In other words, any homo-

morphism is determined by its values on S. 

Un.'"" ta.aoJ, 
A. The set S = { Q(p,q) 1 {p,q} E e(T)} is detennining for 1112 . . 
B. Let S c ~ be a set such that for all p, q e v(T) there is an r(p,q) 

on the chain from p to q in the limit tree (not equal to p and q) such 

that [p,q;rJ, Cr,p;q] and [q,r;p] are in S. Theo the classes of the 

elements of S is determining for ~7'!o· 

p'l0"6: Statement A. follows from (3.6) and (3.14) 1). (Although an 

easier proof is possible.) For B. we consider the relation between the 

relations (checked by a calculation): 

zpq[r,s;p] +zpr[s,q;p] + zp
5

[q,r;p] 

.... 1/3 ( ·~ (N,q; p) - 1P(r.s: p)) Cr,q ;sl 

+ 1/3(.p(q,r; p) - ..p (s,q; p)) [s,r;ql 

+1/3(.p(r,s;p) - ..p(q,r;p)) Cq,s;rJ = 0 

Let ex E .Ax· We will first show that ex take zero values on relations 

[s ,q; pl for which p, q and s lie on a chain in the limit tree. If s lies 

on the chain from p to q then take r = r(p,q). lf s = r then ex takes zero 

values on Cs,q;pJ by assumption. Otherwise we may assume by induction 

(on the distance between vertices in the limit tree) that ex takes zero 

values on on all relations occuring in the above relation between the 

relations except for[s,q;p] and Cq,r;pl However ex([q,r;p]) = 0 by 

assumption and it therefore follows that: 

zpr°' ( Cs,q; pJ) = 0 

But as Ox has no zero-divisors it follows that ex( s,q; pJ) = 0. 

The proof for the case that s is in ,!(p,q) U ~(p.q) is similar. 
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For p,q and s not on take r to be the centre of p,q and s in the limit 

tree, and use the fact that we just proved that ex takes zero values 

on all relations in which r occurs . 

Although the O(p,q) are generators for T~ , it turns out to be 

convenient to work with certain other elements K(p,q) t Ax . These 

K(p,q) will be used in § 4. To define these, we need an additional 
') 

structure, that is also convenient for picking a C-basis for Tx. 

L>~fa.a1)1 

* The distance f unction d :+f.x+f. --+ lN is defined by the length of 

the chain from p to q in the limit tree . Thus : 

0) d(p,p) = 0 

1 ) d(p .q) = 1 # {p,q} e e(T) 

•A function min :+f.x+f.\{(p,q)f d(p,q)~l }--++f.is called a (coherentJ 

minimum function if it has the following properties : 

0) min(p,q)=min(q,p) 

1) min(p,q) • C(p,q)\{p ,q} 

2) p(p ,q; min(p,q)) = m(p,q) , where m is as in (3.2) 

3) lf C(a,c) cC(p,q) then min(a,c)=min(p,q). 

Using (1.12) one sees that such coherent minlmum functions do exist. 

* A function max : e(T) --+v(T)=+f. is called a maximum function 

if it has the fol lowing property: 

lf r=max({p,q}) then either {r,p}Ee(T) and p(r,q;p) = s(p,q) 

or {r,q}e e(T) and p(r,p:q) = s(p,q) 

Here s(p,q) is as in (3 .2). Using (2.12) 2) such maximum functions 

do exist. 
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1'uJ1tUULo1t( 3.22)' 

Let min:+f.x+t --++f. be a coherent minimum function. Put 

~(min):=Up,q;min(p,q)J, & cyclic, d(p,q)~2} 

Then for all p, q with d(p,q) ~2 there exist unique elements 

KCp,q)EAx 

with the property that: ( with m:=min(p,q)) 

K(p,q)( [p,q;m1 ) =-zmq 

[q,m;p] = Zpq 

[m,p;q] =<p(m,p;q) 

r = 0, for all other r E~(min). 

These K(p,q) generate T ~ . 

'1'lD"61 Assume for the moment that such a set of generators exists. 

Then it should be possible to express our O(p,q) € Ax in terms of these 

K(r,s) and [r,slv. We try the following Ansatz: 

(•) O(p,q) = In~(p,q),sE~(p,q) ( ArsK(r,s)+Brs[r;slv+AsrK(s,r)) 

By (3.20) B. we can check such a formula by evaluations on [r,s;m], 

[s,m;rJ and Cm,r;sl, where m=min(r,s). We summarize in a table the 

values of O(p,q), K(r,s), [r,slv ,K(s,r) on these relations: 

TABLE 

O(p,q) K(r,s) [r,s]v K(s,r) 

[r,s;m] u. ) "rs - Zms <p(r,s ;m) Zmr 

[s,m ;rJ ( V ) Arm Zrs -zrm <p(s,m;r) 

[m,r;sl ( W) Ams <p(m,r;s) Zsm -zsr 

Her'e U =(<p(r,s;m)/xm(p,q)); V=-(<p(s,m;r)/xm(p,q»; W =-(<p(m,r;s)/xm(p,q)). 

Hence, looking at Cr,s;ml and comparing coefficients we get: 

U · '-rs = -ArsZms + Brs<P (r,s;m) + Asrzmr 

Writing '-rs = C,.5 Zpr -C8 r zps as in (3.8) and using the linear equations 

the left hand side can be rewritten as: 
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Now we compare coefficients and get 

U.C,.s = Asr 

U.Csr =Ars 

u. ( Cr5 tp (p ,m;r>-Csrlf> ( p ,m;s)) = <p (r,s;m)Brs 

We claim that indeed the left hand side of this last equation is 

divisible by cp(r,s;m). To see this, assume for simplicity that r and s 

are different from p. Then one has, by (3 .8) and (2.4)2): 

Crs <p(p,m ;r)-Csr<f>( p,m ;s) =( <p(p,r;s)<p( p,m;r)+ <p( p,s;r)<p(p,m; s) ) l<P ( s,r;p) 

=( -cp(p ,m; s) tp(m,s ; r) +<p(p,s ;r)cp(p,m ;s) )1 tp (s ,r;p) 

=( <p(p,m ;s)tp(p, m;r) )!<p(s,r ;p) 

Now p(s,r;p)=p( m,r;p) ~ p(p,m ;r) and 

p(r,s ;m)=p(p,s;m)~p(p,m ;s) 

by the defining properties of the limit tree T (2 .12) . 

Hence, one can divide by cp(r,s;m) to define Brs · 

A tedious, but rather straight forward calculation show that with 

these choices for Ars• Brs and Asr the evaluations of (•) on the 

relations [s,m;rl and [m,r;s] also hold. (A little miracle). 

Given these facts, we can now reverse the argument to show that 

there exists such homomorphisms K(p,q) : by descending induction 

on the distance d(p,q) between p and q in the limit tree: 

K(p,q) = u-1.( n<p,q) -

(Ln.!(p,q), se~(p,q), (r,s):l:(p,q)( ArsK(r,s)+Brs [r,slv +A8 rK(s,r) ) ) ) 

This works, because ~ =1 and U is a unit by construction. !8l 

~uu," f a.aaJ, 

1) The vector field -8-(p) := Lqe+f.-{p} O/c)zqp is in 8_! , and its image 

in Nx is: 

Lq:{p,qhe(T) o(p,q) 

2) Write lfJ(p,q;r)=apr-aqr for some apreC{x}. The vector field 

&:=c)/c)x+ "V ~ oxarsoz is in 9_!. 
L..ir,se-n. rs 
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The image of .S in Nx is : 

Lcp,q}ee(T) 0x<Spq>1 fpq · i:Cp,q) +oxapq 0 (p,q) 

3) the image of [p,q]v , {p,q}ee(T) in Ax is 

Cp,qlv= Ls:min(p,s)=J<(p, s) + Lr:min(q,r)=p K (q,r) 

. pzc"': 
The vector field .S-(p) is tangent to the linear subspace ~. because 

it gives zero on all linear equations L<r,s,t) . 

On the quadratic equations Q(r,s) with {r,s} an edge of T we only have 

non-zero values if {p,q}={r,s}. The element 

.S( p) = Lq:{p,qhe(T) o{p,q) 

has the same values by (3.9). Because the Q(r,s) with {r,she(T) form 

a detem1ining set, the formula 1) follows . The proof of 2) is similar 

and is left to the reader. The proof of 3) is easy because the values 

of the left hand side and the right hand side on relaties of ~(min) 

are equal, as one imrnediately checks. Hence 3) follows because ~(min) 

is a determining set of relations . 

CotollAt\f ( 3 .24), 
. . 1 

The number of generators of T X is 2m-4 when on the first blow-up 

there is no singularity of multiplicity m. Otherwise the number of 

generators is 2m-3. 

1 
1'tcc6 : By (3.12)2) we have that the number of generators of Tx;r 
is 2m-3. We have 3m-3 generators o and t for Nx. By (3.21) 1) we have 

m relations between the o' s in T~/T , coming from the vectodields 

.fr(p), pE+f.. lt can be seen that the -& from (3.202) maps to a generator 

of T ~/T exactly if there exist p, q , r with p (p, q; r)=1 . But this means 
A 

precisely that X has no point of multiplicity m. !81 
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1 ) 

2) 

3) 

x 1 (p,q) o(p,q) e ES 

xl(p,q)-s(p,q)+t 't(p,q) e ES 

xm(p,q)K(p,q) = O in r3' 
Here l, s and m are as in (3.2). 

f:1'l"o6 1 Consider {p,q}Ee(T), and Jet o = o(p,q) e Nx. This normal rnodule 

element corresponds to a defonnation of X over CCd/( e2) described 

by the following perturbation of the Canonical Equations: 

Q(r,s)+e.o([r,s]) =O , r,s e+i.. 

By the definition of the o's (3. 9) we get, with ae.!=.!(p,q), ce~=~(p,q): 

Q(a,c)+e.A.ac =O 

Q(r,s )+e.0 =O if r,s e.! or r,se~ 

Using (2.4), we can rewrite this as: 

(zpc<zcp + e) - scp = 0 

(zac+e Cac )(zca+E Cca )-Sac +2e.Sac/<P(c,a;p) =O for a=!=p 

where the cac are as in (3.8). 

Let 4> be the coordinate change given by: 

Zac ~ Zac-E Cac 

Zca ~ Zca -e Cca 

Zrs ~ Zrs if r,se.! or r,se~ 

Then one has: 

4>*(Q(p,c)+e.o( Cp,cl ) ) = Q(p,c) 

* 4> (Q(a,c) +e.o( [a,cl )) = Q(a,c)+2.e.Sac/<t>(c,a;p) 

c)*(Q(r,s)+e.o( [r,sl)) = Q(r,s) 

We recognize this as the Canonical Equations belonging to 

<J!(a,c;p)=<P(a,c;p) - E 

etc. 

Note in particular that in this canonical form the equations Q(p,s) are 

unchanged for all s e+f.-{p}. 

Now the normal rnodule elernent xHp,q) o corresponds after a sirnilar 

coordinate change to the Canonical Equations belonging to the solution 
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tjJ(a,c;p) = <p(a,c;p) -E.xl(p,q) 

~(r,s;p) = <p(r,s;p) r,sel- or r,s e]i! 

etc. 

Because by definition p(a,c;p)~l(p,q), it follows from (2 .9) that there is 

a one parameter deformation having xl(p,q)o as first order tenn, 

and with 

'f'(a,c; p) = <p(a,c ;p) - t xl(p,q) 

'f'(r,s;p) = <p(r,s;p) r,sel- or r,se]i! 

r e+i..-{p} 

Here t is the deformation parameter. Because p(a,c ;p) and l(p,r) are 

constant under this deformation by (2.7) and the definition of )(p,q) 

it follows from (1.8) that the dual graph of the resolution of a general 

fibre of the one parameter deformation is X is the same as the dual 

resolution graph of X In particular, xl(p,q)o is an infinitesimal 

equisingular defonnation, hence in ES. 

The proof of the second statement is similar and left to the reader. 

To prove the third statement we note that from (3.22) it follows that 

K(p,q) is a linear combination of the O(r,s) for which C(r,s) => C(p,q) 

and min(r,s) = min(p,q). In particular m(r,s)= m(p,q) for such r and s and 

thus m(p,q)K(p,q) = 0 follows from xm(p,q)O(p,q)= 0, which follows 

from the definition of O(p,q). 

We now attach to a rational singularity with reduced fundamental 

cycle C { x}-modules that turn out to be isomorphic (as C{ x}-modules} . . 
to T~op and T~ : 

-z>~fa.26)1 

Let X be a rational surface singularity with reduced fundamental cycle. 

A. Let Tk0 P be the C{x}-module generated by symbols: 

0 (p,q), O(q,p), and "'C'(p,q)= "'C'(q,p) 

for p,q E +t. with {p,q} an edge of the limit tree, subject to the relations: 
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Iq:{p,qhe<T) O(p,q) = O 

xl(p,q) 0 (p,q) = 0 

xl(p,q) - s(p,q)+1 't (p,q) = 0 

I{p,qheCT) ox<Spq)/fpq. 't (p,q) +oxapqo (p,q) = O 

B. Let T~ be the C{x} module generated by the symbols: 

K(p,q) 

for p ,q E +t with {p,q} not an edge of T, subject to the re lations: 

Ls:min(p,s)=qK(p,s) + Lr:min(q,r)=pK(q,r) = O 

CZ'.Loum( a.2?)' 

There are isomorphisms of C{x}-modules: 

A. 

B. 

T ~op ---+ T ~op 

T3c ---+ T~ 

ptc"': This is essentially a counting argument. We will first prove 

statement B. By (3.23)3) and (3.25 )3) there exists a weil defined · 

surjection of C{x}-modules: 

T3c „ 
--• ... • T"'x 

given by sending K(p,q) to K(p,q). To show that this map is an 

isomorphism we only have to show that the dimensions as C-vector­

spaces are equal. So we will show that: 

dim(T~) = Lv€BT(4.)(m(v)-1)(m(v)-3) 

By definition Ti only depends on the limit tree T , and the chosen 

coherent minimum function min. We change notation and put 

T2(T):= T3c. 
A 

Let T be the first blow-up of T in the sense of 0 .17). 
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A 

We will choose a coherent minimum function for T in the 

following compatitble way: 
,... 

if p,q are vertices of a connected component of T , then 
,... 

min (p,q) = the unique vertex r on the chain from p to q in T with 

b<r) = min (b(p),b(q)) 

" Otherwise it is not defined. Remark that by construction of T it follows 
A 

that min(p,q) is not deflned exactly when m( b(p), b(q)) =1 or {p,q}E e<T ). 
2"' 2"' A A 

We put T (T) = ©T (T k) where T =11 T k , the decomposition 

into connected components. 

We will show that there is an natural isomorphism of C{x}-modules: 

()(; T 2(T) ~ ~ xT2<n 
lt is defined on generators as : 

ex( K( p,q)) = x. K( b( p), b(q)) 

Because clearly dimCT2(T)/x.T 2<T))=(m-1Hm-3), the dimension formula 

then follows by induction. 

To show that the map ex is well -defined, we have to show that the 

defining relations are mapped to zero: 

cx(xm(p,q)K(p,q))=xm(p,q)+t K(b(p) ,b(q)) 

By <t .17) we know that m(p,q) = m(b(p), b(q))-1, so by definition the right 

hand side is indeed zero. As for the first relation: 

ex { Ls:min(p ,s)=qK(p,s) + Lr:min(q,r)=pK(q,r)} = 

X { Ls:min(p,s)=QK(b(p),b(s)) + Lr:min(q,r)=pK(b(q), b(r))} 

A 

By deflnition of the minimum function on T we may rewrite the index 

sets in the second expression. For the first term we get: 

{s: min(b(p),s)=b(q) such that m (b(p),s) > 1} 
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and similar for the second term. Because for all s e +t with rn(b(p). s)=t 

we have that x.K( b(p), s) = 0 in T 2CT> we may as weil take the index 

set tobe {s:min(b(p),s)=b(q)} and similar for the second term. Hence it 

follows that the map o.: is weil defined. 

To show that ex is an isomorphism we exhibit an inverse of et: 

We define ß on generators x.K(r,s) as follows: 

If m(r,s)=t, then x.K(r,s)=O, so we need not consider this. If m(r,s) :!: 1, 

"' there exist unique p and q in a connected component of T such that 

r=b(p), s=b(q) and we put ß(x.K(r,s)) = K(p,q). lt is proved in a similar 

way that ß is well defined homomorphism of C{x}-modules, and clearly 

it is inverse to ex. This completes the proof of B. 

We now we turn to the proof of A. Again, by (3. 23)and (3.25 ) there 

is a surjection of C{x}-modules: 

T top Ttop 
X ---+ X 

by sending generators to generators with similar names. We show that 

they have the same dimension as C-vector spaces, and hence are 

isomorphic . 

The C{x}-module T~op is of the form (S EBT)/(r), where r is the relation 

Here S is the . module generated by the O(p,q) and T is generated by 

the 't(p,q), subjected to the obvious relations. Note that the 

C{x}-modules S and T do only depend on the limit tree T, and 

therefore we can write S=S(T), T=T(T). As in the proof of B. one 

shows that there is a isomorphism 

"' ~ S(T) --+x.S<T) 

Because dim(S(T)/x.S(T))= m- 2, it follows that 

dimS(T) = LveBT ( m(v)-2) 
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For the T we have to use a different argurnent: 

We clairn that dimT(T) = :l)-Er -1) -IvEBT<J>1 +1 

(Here BT(3) is the the set of v E BT with m(v)~3 . ) 

This is equivalent to the statement that: 

( •) ~p,qhe(T) l(p,q)-s(p,q) = •vertices of f -•vertices of BT(3) 

because L{p,q} ~ e(T) 1 = m-1 = I<-E1
2

-2)+1. 

Formula ( *) is obviously true for an Ak singularity. (Here we formally 

put s(p,q) = 0.) 

To prove formula (•) it suffices to show that it is "stahle" under blow-up . 

" So , consider r as in (1.10) , the resolution graph of the first blow up. 
A 

We have that •vertices of f - • vertices of f = •<Er Z.Ei < 0} 

Moreover the number of vertices of BT(3) reduces by one . 

So the right hand side of (•) changes by =<Ei : Z.Ei < 0}-1 which is 

equal to : 

)- Z E - ) (-Z.E· -1 ) -1 
t.....i. • i -'--.J ·. z E« O 1 

1 1. . 1 
= rn-1 - ""1 (-Z.E· -1) 

L..ii:Z.E(O 1 

Now by (1.17) edges {r,t} of T correspond to edges {p ,q} of T 

( p = b(r). q = b(t)) with l<p.q) ~3 . Furthermore: 

l(r,t) = l(p,q) -2 ; s(r,t) = s(p,q) - 1 

Thus one has: 

) " l(r,t )-s(r,t)- ""1 l(p,q)-s(p,q) = 
"-'fr ,t he(T) Li 

{p,qhe(T) 

m - 1 - u{ {p ,qh e(T): l(p ,q)=l} 

So ( *) is equivalent to : 

u{{p,qhe(T) : l(p ,q)=l} = ""1 (-Z.E ·-0 
L..i i:Z .E. <O 1 

l 

which is an easy to prove property of limit trees. Un case that the 

tree comes from an limit equivalence relation, this follows immediately 

from the definition (1 .13 ). ) This concludes the proof of the above claim. 
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By adding it follows from (3.16) 

dim (S(T) ffiT (T)) = dimT*op + 1. 

Because r * 0 in S(T) ffi T(T) it follows that: 

dim(S(THflT(T)/(r)) ~ dim T~op 

On the other hand we already had the surjection: 

S(T) ffi T(T)/(r) ~ T~op 

Statement A. follows from these two facts. Remark that it also follows 

that r is a socke} element S<T)@ T(T). which can also be seen directly 

from the definition of r. 

From (3.27) one can write down C-basis for T*op and T~. but this 

involves further choices. For T ~ this can be done using a maximurn 
'l 

function as in (3 .21). The following elements form a C-basis for T :X: 

K(p,q) , x.K(p,q), . .. , xm(p,q)-1 . K(p,q) 

where p,q are such that d(p,q) ~3. or d(p,q)=2 and q * max(p,min(p,q)) . 

This basis will be used in § 4 to express the obstruction map. 

Furthermore we remark that we do not know exactly the Ox - module 

structure. of T* and T~ although it should be possible to calculate 

this. In CB-CJ it is claimed that there exist generators x, z1. „. , Zm of 

the maximal i·deal of Ox such that zk T~ = 0 for all k : However, their 

proof is wrong and in fact one can construct rational singularities 

with reduced fundamental cycle for which this is not true. 
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In this section we will describe an algorithm for computing a versal 

deformation of a rational surface singularity with reduced fundamental 

cycle . This is done by constructing an explicit flat family and using 

a criterion of versality of such a family. The same criterion was used 

by Arndt CArnJ. In order to formulate this criterion we recall some 

basic facts from obstruction theory (see also for example CLaud]). 

Suppose that we have an embedded family Xs over S: 

x5 '---+cNxcM 

! C-+ 1M 
Let lA be the local coordinate ring OcM,0 , and let S be defined by 

an ideal t) c IA. Let the ideal of X c CN be generated by f1, ... ,f P' 

and let the ideal of Xs be generated by r15 •. .. ,fps· 

The flatness of Xs over S is expressed by the following : 

Flatness in terms of relations: 

The family Xs --+ S is flat 

# 

All r=(r1, r2 , . . „rp) with ~rifi =O can be lifted to 

rs:;<r15 ,r25 , „ „rps>with 2:r15r15 = o in Os®OcN 

Suppose that Xs --+S is a flat family, and that we have chosen for 

all relations r such lifts r5 , and consider a small surjection of 0 5 . 

This means that we an exact sequence of the form : 

O--+ V --+OT -+Os --+0 

where V = U)!(h } , Or :;: IA!t;h and t;h et) an ideal such that 

m . V=O, m=maximal ideal of IA. Hence V is a C-vector space. 

Associated to these data there is an obstruction element 

2 
ob e Tx ®c v 
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defined as follows: 

1) Take arbitrary lifts f1r.f21 . „ „fpT of the f15.f25 . „ .,fps· 

2) For every relation r = ( r1 ,r2 , ... , r p) take an arbitrary lift 

rr=Cr1r,r2 r„„,rpT) of rs 

3) Given all these choices, we put /\(r)=~riT . fiT EOcN®ccV 

4) A. can be considered as a well-defined element of 

Ax®ccV = Hom(~,Oxl®ccV 

5) By variing the choices made in step 1) and step 2) the class 

of /\ in T~ ®cc V is well-defined. This class we denote 

by ob and call it the obstruction element of the family Xs--+ S. 

The interpretation of the element ob is the following : The flat family 

Xs --+S can be extended to a flat family Xr --+ T exactly when 

the obstruction element is zero. 

Now choose Ot = m/). The obstruction element for the corresponding 

small surjection gives by transposition rise to the obstructio11 map: 

ob* : Cl}/m.t)>* --+ T~ -
(Here * means C-dual space.) 

The above mentioned versality criterion now is the following : 

A flat family Xs --+ S is versa} if and only if the following two 

conditions are satisfied: 

1) The Koda'ira Spencer map 
2 1 

(m5/m5)*--+ Tx 

is surjective. 

2) The Obstruction map 

Cl}lml}>*--+ T~ 
is injective. 

(We do not recall here the definition of the "well-known" Kodaira­

Spencer map.) 
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For the (easy) proof we refer to [Arnl. We remark that one gets a 

semi-universal deformation if the Kodaira-Spencer map is an isomor­

phism. 

Condition 2) can be interpreted as saying that the dimension of the 

image of the obstruction map is equal to the minimal nurnber of 

equati~ns to describe the base space of a serni-universal deformation. 

In general, the obstruction map is not surjective. In our case we have, 

however: 

Let X · be a rational surface singularity with reduced fundamental 

cycle, and ~ be the base space of a semi-universal defonnation of X, 

defined by an ideal 1). Then the obstruction map 

ob*:Cl)/ml)>*---+ T~ 
is an isomorphism. 

proo6 ·' 
First we remark that the theorem holds for X =. Cm• where Cm is the 

cone ov.er the rational normal curve of degree m. See e.g. [Arnl Take 

a small representative of ~ (again denoted by ~). lt suffices to show 

that there exists a points y E "B . arbitrary close to 0 , with the property 

that the minimal number of equations to describe the genn C"B,y) is 
.., 

equal to dim(Tx ). We consider a one-paramter deformation 

Xr --+T as in (2 .14) . lt has on a general fibre singularities Cm(v)• 

for all v E BT. By versality there exists a map j : T --+ "B inducing 

this deformation. Let y be a generic point of the image j(T). By 

openness of versality, (°B,y) ~ X VE BT <B(m(v)) x smooth space, 

where B(m) is the base space of a semi-universal deformation of Cm. 

As the minimal nurnber of equations to describe a space is additive 

under taking cartesian products, the theorem follows frorn (3.16), once 

we know the truth of the theorem for Cm. 
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We now turn to the our construction of a Csemi-uni)versal deformation 

for any rational surface singularity with reduced fundamental cycle. 

First we will describe this in the analytic case, and later we will 

indicate how to obtain an algebraic representative of our family. 

From now on we fix a rational singularity X, described by the Canonical 

Equations (2.2) associated to a holomorphic solution to the Rim 

Equations spq ,lj)(p,q;r) E C{x}. Furthermore, we fix a limit tree T for 

X ( see U.12)), with coherent minimum function min and maximum 

function max as defined in (3.21). Before describing our construction, 

we need some definitions. 

~(4.3), 

For all pairs p, q with {p,q} e e(T) we choose polynomials 

Spq :=spqO + SpqtX+ Spq2x2+„.+ Spqkxk+ 

tpq :=tpqO + tpqt x + tpq2 x2+ ... + tpqmxm+ 

(with tpq = tqp), where the coefficients are indeterminates or zero, 

such that the corresponding monomials 

i j k U{p,q}ee(T){ X o(p,q), xi:(p,q),x o(q,p)lspqi•tpqj•sqpk:;:Q} 

1 
form a basis of Tx. 

As T~ is generated over C{x} bythe o's and i:'s, such a basis does exist. 

We let LA. = C{ spqi ,tpqj ,sqpk> be the power series ring on these 

(non-vanishing) indeterminates. Similarly, we have /A.{x}, and we 

consider the spq and tpq as elements of /A.{x}. 

~(4.4)1 

Let T be a limit tree, and let max:e(T) ---+ v(T)=+f be a maximum 

function as defined in (3.21). Associated to such a maximum function, 

we define the set 1J c+tx+t of fundamental pairs as follows: 

( p,q) E p 
# 

d(p,q)= 1, or p = max(m,q) for some m e+t. 

(Note that in the second case {p,m} and {m,q}EeCT), so d(p,q)=2) 

Remark also that if d(p,q) =2 and (p,q) is a fundamental pair then q = 
max( {p,min(p,q)}). 
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~(4.a)1 

We choose some splitting of the <P-cocycle; i.e. we choose 

for each (p,q) e+t X +t, p:i:q a function bpq E C{x} such that 

bpq - brq = <f>(p,r;q) 

For each fundamental pair (p,q) e p we define 

* if d(p,q) = 1 :. ~Q = bpq + Sqp E /A.{x} 

• if p=max(m,q): apq = bpq + tqm - sqm e /A.{x} 

We put ,Äp = { apq 1 (p,q) e'j)} 

!J~ ~u (4.6)1 

We will describe a procedure that, starting from the above data produces: 

• an ideal l;J c IA. 

• elements Tpq e /A.{x}, p:i:q e +t 
• elements <jJ(p,q;r) e/A.{x}, p,q:i': r e +t. 

This is achieved by defining inductively 

• ideals 1)1 c 1)2 c . „ c l;J c IA. 

• subsets ,41 c,42 c ... ; ,Ak=<apqelA.{x}ld(p,q)s:k} 

* subsets 1f1 c1f-2 c ... ; 1fk={4J(p,q;r)el4.{x}ld(p,r)&d(q,r)sk} 

* subsets 'li c 'r2c „. ; 'l'k=<Tpqe lA.{x} 1 d(p,q)s:k} 

!Jmtialisation: 

• l:J1 = (Q) 

• .A1 c ,Äp 

• 1f'1 : If d(p,r)=d(q,r)=t, we put 4J(p,q;r) :=apr - aqr 

* 'l'1: If d(p,q)=1, put T pq := 4J(r,p;q)4J(r,q;p), where r=max({p,q}) 

Remark that clJ(r ,p;q) and tlJ(r,q;p)e,Äp· 

Suppose l:Jk• ,Ak' 1f'k,'l'k have been constructed. 

Consider p,q e+t, with d(p,q)=k+l, and let m:= min(p,q). 

Clearly: Clmpeflk; 4JCp,q;m)e1f'k; Tpme'l'k; 

By the Weierstraß Division Theorem we can find unique Q and R 
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such that: 

Tpm = Q.4J(p,q;m) + R 

where Q e LÄ.{x} and R e LÄ.[xl such that 

degx(R) <ordx(4J(p,q; rn) = ord( ip(p,q; m) =rn(p, q). 

We define: 

4J(q,rn; p) : = Q 

Epq := R 

(Remark that Epq = 0 if d(p,q) =2 and (p,q) is a fundamental pair. 

We put: 

Ok+t := <Ok.<Opq1d<p.q)=k+n>. 

where Opq c M is the . ideal generated by the coefficients of Epq· 

We can now define: 

Finally we put: 

T pq := 4J(q,rn; p)4J (p,q ;m) 

aqp: = 4J (q,rn; p) + amp 

tj.i(p,q ;r): = apr- aqr if d(p,r) & d(q, r) ~ k+1. 

Th
1
us we have defined Ok+t ·flk+1• 'fk+t• 'l"k+t · 

pu~„ (4.?)1 

Let Q and T pq, 4J(p,q;r) 'be the result of the Inductive Process (4.6). 

Then the Rim Equations are satisfied modulo Q, i.e: 

R(p,q;s) : Tpq- <ii<s,p;ql<jJ(s,q;p)=O in CU/0Hx> 

C(p,q,r;s): tli(p,q;s) + 4J(q,r;s) + <ii<r,p;s) = 0 in (LÄ/QHx} 

ptco6 1 The fact that' the Cocycle equations C(p,q,r;s) hold, in fact 

not only mod Q. follows trivially from the structure of the Inductive 

Process. In fact, the splitting of the cocycle in (4.5) is only lntroduced 

to control the Cocycle equation; it does not lnfluence the rest of the 

inductive process, and in practice one can forget about it. 

The fact that the Rim equation R(p,q;s) are all satisfied is a little bit 

more involved. We will first show, with induction on d(p,q), that for 

any p,q and s, with S · on the chain from p to q the Rim Equations 
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R(p,q;s), R(s,p ;q) and R(q,s ;p) are satisfied. Because the three cases 

are similar we will only consider the Rim Equation RCs,p ;q). 

Let m:= min(p,q). lf s=m then the Rim Equation RCs,p;q) holds by 

definition modulo l;J, because of the definition of 4J(q,m ;p), and the 

ideal l;J. Now assume s :i: m. We may assume without loss of generality 

that m e C(s,q) . lt follows from the coherence of the mininum function 

that m= min(s,q) . 

We use the cocyle conditions C(q,s ,m;p) and C(q,p, m; s) to rewrite 

~(q,s;p)tlJ(q,p ;s) as: 

4'Cq ,m;p) <Jl(q,m;s) + 4' Cq,m;p) cJ!(m ,p;s) 

+ \j;(m ,s ;p) c.IJ (q,m;s) + <Ji(m ,s;p) <Jl(m,p:s) 

By induction we have Tps= ljJ(m,s;p)ljJ(m,p;s) modulo l;J. 
So we have to show that: 

(•) := 4; (q,m ;p)cJ!(q ,m ;s) + <Jl (q,m;p)cJ!(m,p;s) + qiCm,s;p)ljJ(q,m;s) =O 

in (/A./l)Hx}. 

Now by lemma (4 .8) below, none of the ljJ' s is a zero-divisor in 

(/A./l)Hx}, so the proof of (•) is formally the same as in (2.9). 

For the case that p,q and s are not on a chain in the limit tree, take 

m to be the centre of p, q and s in the limit tree, and argue as above , 

using the fact that the Rim equations are now known to hold for 

three vertices on a chain in the limit tree . 

~mmA.(4. 8)1 Let U be a power series ring , l;J c U an ideal and 

f= Lakxk 

be an element of ( U/l)){x}. lf for some k ak is a unit of U!l;J then f 

is not a zero-divisor. 

pto"6: Let n be the smallest number such that an is a unit . Then one 

can write: 

f = ux" + r 

where u is a unit and degx(r) ~ n-1. Let gECU/l)Hx} with f-g = 0. 

Then x"g = - u-1·r·g . From this it follows that gE n (xi) = 0. 181 
i= 1 
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Let X be a rational surface singularity with reduced fundamental cycle. 

Suppose we have chosen: 

* functions spq ' lfl(p,q;r) E C{x} that satisfy the Rim Equations (2 .2), 

such that X is described by the Canonical Equations (2.2). 

* a limit tree T U.12), with coherent minimum function min and 

maximum function max (3 .21). 

• the ring U, as in (4.3}. 

Let t)ctA., Tpq, <jJ(p,q;r)ElA.{x} be defined as the result of the 

!Jnouetwe Ptcerzss ( JI. .6). 

Let "'8 :=Specan(lA.!Q>. 

Then the family X"'B ----+ "'8, defined by the 

equations : 

OB<p,q):= Zpq Zqp - T pq = 0 

zpr- Zqr= 4J(p,q;r) 

is a semi-universal deformation of X. 

,nc"6: The above family is flat because of (2.11) and (4.7). 

This means that one has: 

•) zmpQ-aCq,m) - Zmq07J<p,m) + 4>Cp,q;m)07J(p,q) = 0 mod t;J. 
We claim that the obstruction element of the family is equal to: 

ob= - 2:: Epq K(p,q) 
(p,q):{p,qh'e(T) 

where K(p,q) E T2x are defined as in (3 . 22). For this we only have to 

check that the values on the determining set of relations Cp,q;mJ & 

cyclic {m= min(p,q)) are the same. So we have to calculate the 

expression •) as element of t;}lm/). As in the proof of (3.1) one sees 

that •) is equal to: 

zmp<<IJ(p,m;q)<jJ(p,q;m) - Tmq> 

- Zmq { 4J(p,m;q)<jJ(q,p;m) - T mp } 

+ \jl(p,q;m) { \jl(m,p;q)\jl(m,q;p) - T pq> 
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Because m = min(p,q) this expression is by definition equal to : 

-zmpEqp + ZmqEpq 

Similal"ly one sees that the values of ob on: 

Cq,m;pl 

[m,p;q] 

is -zpqEpq + tp(m,q;p)Eqp 

is ZqpEqp - cp(m,p;q)Epq 

mod ml) 

mod ml). 

So from (3 .22) it follows that the obstruction element is as claimed. 

Now remark that Epq = 0 for (p,q) a fundamental pair. We know that 

(p,q) is a fundamental pair exactly when q=max({p,min(p,q)}) . Hence 

the injectivity of the obstruction map follows from the explicit bases 

" of T"'x of (3.28) together with the remark that the degree of Epq In 

x is smaller than 'm(p,q) . @ 

'/i!.tlwui.tl:(4.10}1 The inductive process is not algorithmic in the sense 

that Weierstr~ss division cannot be (a priori) done in a finite amount 

of time . In case one has an algebralc representative of the singularity 

X , i.e. the elements of ,4p are polynomials, one can use the Mora 

normal form instead of Weierstrass division in the inductive process 

(4 .6). This means that one works in the polynomial ring localized at 

m . For any T pm and 'f(p,q;m) in this localization one can find 

(constructively) elements Q, Rand h E m such that: 

(1 + h)T pm = Q \f(p ,q; m) + R 

with degx(R) < m(p ,q) . 

The proof that in this case one also finds a semi- universal deformation 

is the same as above , if one uses the remark that an ideal generated 

by coefficients of a power series does not change if one multiplies the 

power series by a unit. 

~rJ:/4.11}1 

Although the inductive process (4.6) gives a method to compute the 

equations of the base space, it does not seem to be wise to do so in 

examples . We did an example (simpler than the example (1.7)) , and 
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got an computer output of about five pages, which of course we will 

not reproduce here. 

In our opinion, however, the equations for the base space in explicit 

form are not of importance at all; what matters is their interpretation 

in terms of division with remainder. 

In simple examples thls Interpretation enabled us to determine the 

number of components of the base space. We will study the question · 

on the number of components of the base space in a future article. 
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