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Abstract.

In this paper we study the deformation theory of rational surface
singularities with reduced fundamental cycle. Generators for T! and
T2 are determined, the obstruction map identified and an algorithm

to find a versal family, starting from a resolution graph, is described.
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For a germ of an analytic space X with an isolated singular point the
existence of a semi -universal (or versal) deformation Xg — B of
X has been proved by Schlessinger [Schl 1] in the formal, and by
Grauert [Gral in the analytic case. We call B the base space of a
semi-universal deformation of X, or, as it is unique up to (non-unique)

isomorphism, the base space of X, for short. The Zariski-tangent space




to B can be naturally identified with the vector space T)l( = Def(X)(T),
where T = Spec(Clel/ (¢2)) and Def denotes the deformation functor.
The space B is smooth if the obstruction space T>2< is zero. This
happens for instance if X is a complete intersection, or if X is
Cohen-Macaulay of codimension two. In these cases it is therefore
relatively easy to compute a versal deformation of X. In general
however, B can be very complicated. It can have many singular
components, intersecting in a complicated way.

Although obstruction calculus (see e.g. [Laud1) can be used to compute
a versal deformation to every order, this method is quite involved and
requires enormous computational skill. It is a major problem in
deformation theory to find a description of a versal deformation that

leads to an understanding of the component structure of B.

The deformation theory of rational surface singularities has been
studied by various authors. We mention Pinkham [Pil, Riemenschneider
[Ri], Wahl [Wa 21, Kollar and Shepherd-Barron [K-S1, Arndt [Arnl,
Christophersen [Chl, Behnke and Knorrer [B-K1, Stevens [St 11, and
the authors [J-S1, etc. In particular the class of (cyclic) quotient
singularities has been studied thoroughly, as well as rational singulari-

ties of multiplicity four.

In this article we study the deformation theory of rational surface
singularities with reduced fundamental cycle. As this class properly
contains the class of cyclic quotient singularities, our results can be
seen as a generalization of part of the results that are known for

these singularities. We have obtained the following results:

1): Starting from the resolution graph I' we describe how to find
equations for all rational surface singularities X with resolution

graph T'. This is subject of §2, in particular (2.2) and (2.9).

2): We find explicit minimal generating sets (as Ox—modules) for T1X
and T%, see (3.14).



3): We derive the following dimension formulae, see (3.16):

] 1 5 1,
A. dim(T\,) = (m(v)-3) + dim(H (X, 0y)
X ZveB'I'(ll-) X

D
B. dim(T4,) = (m(v)-1)(m)-3)
X ZveBT(ll-)mv m

In these formulae the sums run over the nodes v of the so-called
blow-up tree (1.10) BT which are of multiplicity m(v)24. A node v
of BT corresponds to a singularity appearing in the process of
resolving X by blowing up points. X is the minimal resolution, and
formula A. is maybe best understood as a statement about the
codimension of the Artin component.

4): The obstruction map is surjective (4.2). This means that the minimal
number equations for the base space B of X is equal to the

. dimension of T%.

5): We describe an algorithm for computing a versal deformation of
X, see (4.6) and (4.8). The equations for the base space B appear
as the coefficients of polynomials that occur as remainders of

certain specific divisions.

The results of this article are based on four main ideas, which we
will describe now.

The first idea is that of hyperplane sections. This was used before
by various authors e.g. Buchweitz [Bul, Behnke and Christophersen
[B-K]1 and Stevens [St 3]. Behnke and Christophersen pro§e that a
general hyperplane seqtion Y of a rational surface singularity is
isomorphic to a so called partition curve. If the fundamental cycle is
reduced, then Y is isomorphic to the union Upe‘H. Yp of the coordinate
axes in €™, m=mult(X). (Here # is an index set). A basic fact is the
converse: Any total space of a one parameter smoothing of Y is a
rational surface singularity with reduced fundamental cycle, see (1.4).
It is not true for the other partition curves, however, that the total
space of any one-parameter smoothing is rational; it is easy to

construct counter examples. This explains partly why the case of



reduced fundamental cycle is easier to handle:

As a semi-universal deformation of Y has been computed by Rim, one
gets immediately equations for X by pulling back the equations for
the semi-universal family. In particular, for p.q <, p*q, one gets
functions Spq ¢ C{x}, and for p,q,reH, p,q.,r all different, functions
¢(p,qir)eCix}, satisfying a set of compatibility equations (the "Rim
Equations"): ‘
Spq= @(r.q;p)elr.p:q)
¢(p,q;s) +olq,r;s) +olr,p;s) = 0
such that X is descibed by the system of "Canonical Equations™:

ZpaZap™ Spq

Zpr “Zqr = o(p,q;r)
see (2.2). The vanishing orders of the Spq relate to the lenghts of
chains in the resolution graph of X, and in fact determine this graph.
(see (2.7).) We remark that for the cyclic quotient singularities, the
equations are totally different from those found by Riemenschneider

[Ril. Various arguments in the article are based on these explicit

equations.

The second idea is that of looking at a special deformation of X.
This is a deformation having as special fibre X and as general fibre
a space having as singulariies the cone over the rational normal curve
of; degree equal to the multiplicity of X together with all singularities
appearing on the first blow-up of X. The existence of this deformation
follows from the explicit equations for X, see (2.13). This deformation
plays an importanf role in proofs. For example the surjectivity of the
obstruction map follows relatively easy from the existence of this
deformation. Moreover the > statements in the dimension formulae
4A. and 4.B. also follow immediate!y from it. To get equality in 4.A
and 4.B it suffices to lift generators of T1x and sz over the special
deformation. That this indeed is possible, is the content of Proposition

(3.15). The proof uses the explicit generators for these modules.



The third idea is the idea of limits, series and stability. This idea is
not made explicit nor is it really used in this article. Rather it is an
heuristic principle based on various special results and ideas. ([Arn],
[J-S1, [Strl). Roughly speaking the philosophy is as follows: weakly
normal surface singularities appear as limits of series of rational
surface singularities. In the resolution graphs of the members of the
series we find chains of (-2)-curves of increasing length. The
archetypical example as that of the A_ -singularity as limit of the
Ay -series. Stability should mean that for members in the series with
"very long" (-2)-chains the base spaces are the same up to a smooth
factor. This should also be the base space of the limit, up to an
infinite dimensional smooth factor, if properly understood.

The weakly normal limits of series of rational surface singularities
with reduced fundamental cycle have a simple structure and are called
tree singularities. These tree singularities do not appear explicitly in
this article but played an important role in the development of our
ideas. Such a tree singularity has as irreducible components (germs
of) smooth planes Xp for every vertex p of a certain tree T. Two such
planes Xp and Xq intersect in 0 exactly when {p,q} is not an edge of
T, otherwise they intersect in a smooth curve qu. Moreover,
qu N I = 0if {p.q}+{r,s}. The generators of the space of infinitesimal
deformations of the tree singularity have a simple geometrical meaning:
first of all.'for each edge {p,q} of T there is the deformation t(p,q)
that opens up the A _ -singularity that sits on the generic point of qu.
These are the deformations of the limit in the members of the series.
Secondly, for every pair {(p,q) with {p,q} an edge of T one can move
the curve qu in the plane Xq , and move Xp accordingly. These give
deformations o6(p,q) and could be called the shift deformations. Also,
the obstruction space T2 of such a tree singularity has a rather simple
combinatorial description.

In the article we introduce the notion of a /imit tree T for a rational

surface singularity X with reduced fundamental cycle, see (1.12). The



relation is that one can view X as member of the series deformation
of a tree singularity with tree T. In this way the limit tree is seen
to make a distinction between "long" and '"short" chains in the
resolution graph, the long ones being those that correspond to the
series deformations. In fact, equations for the tree singularities are
obtained by putting Spq:O for {p,q} an edge of T. This corresponds
to making the long chains "infinitely long", in very much the same way
as one gets from the Aj-equation yz—xk+1 =0 the equation yz=0
describing the A _-singularity. The explicit generators for T! and T2
obtained in §3 are lifts of corresponding generators for the tree

singularities, which are substantially easier to write down.

We will now describe the idea behind the construction of a versal
deformation of X. A versal deformation Xg —B also can be inter-
preted as a flat deformation of the generic hyperplane section Y, so
it can be described by the Canonical Equations:
ZpqZap ~ Tpq
Zpr~ Zqr=9(P.Qir)

where now qu and {(p,q;r) are elements of O‘B{x) that satisfy the
Rim Equations. These qu and {(p,q;r) are perturbations of the Spq
and ¢(p,q;r) defining X. It is a basic fact that 2.m-3 (the dimension
of the smoothing component of Y) particular ¢'s rationally determine
all the other ¢'s (and S's) via the Rim Equations. We call such a set
of ¢'s fundamental. Perturbing these fundamental ¢'s arbitrarily to
¢'s, one can try to determine the other ('s in the same way as could
be done for the ¢'s. For this the Rim Equations tell you to make
certain divisions. The biggest space over which these divisions are
possible is the base space B, and hence is defined by the coefficients
of remainders of Weierstrass-divisions. The main problem is to find
out- which {'s to take as fundamental. Again this is organized by the
choice of a limit tree.

The number of divisions that has to be done is equal to (m-1)(m-3),
precisely the number of generators of Tz. [B-Cl. The generators
K(p.q) of Tg( in (3.22) are constructed in such a way that with each

one of them there corresponds exactly one division with remainder.

P



Although the equations for the base space B thus obtained become
extremely complicated, it is our hope that the combinatorial description
with the limit tree and the divisions with remainder will provide us
some insight into the structure of B. We hope to report on this in a

future article.

The organization of the article is as follows:

In §1 we list some facts on rational singularities and introduce the
concepts of blow-up tree and limit tree. We advise the reader to start
with §2, and go back to 81 if necessary. In §2 the structure of the
equations of a rational surface singularity with reduced fundamental
cycle is studied and the special deformation is exhibited. 83 is devoted
to the structure of T‘X and sz. In §3.A the generators are constructed
and the dimension formulae proved. In §3.B we study the relations
between the generators. For T)z< our results are complete but for T;(
we only have a good description "modulo moduli". Finally, in §4 the

algorithm for computing a versal deformation is described.

In some of the proofs elementary combinatorics of trees is used. We
strongly advise the reader to draw pictures of resolutions graphs and
limit trees for him or herself, as we think that it will help understan-

ding the arguments.
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§1. Prelininacies.

In this article we study Rational Surface Singularities with Reduced
Fundamental Cycle. Three different trees associated to such a
singularity will play a role, and in this preliminary section we introduce

these in separate subsections.

1.A. Resolution Graphs.
We start with some well-known definitions and facts. This also serves

to fix notations that will be used in the rest of the article without

further mentioning.

Definition(1.1)s ([Arti]

Let X = (X,0) be a normal surface singularity and let
n:(X,E) —(X,0)

be the minimal resolution.

X is called rational if Rln*(0§)=0.

In that case the exceptional divisor is the union of irreducible
components E; , each isomorphic to [Pl, and intersecting transversely.
The (dual) resolution graph T has these E; as vertices, and E; is
connected by an edge to Ej iff E; .Ej >0. For a rational singularity T
is a tree. The fundamental cycle is the smallest positive cycle Z= Zc, E;
such that Z.E; <0 for all i. This cycle has the property that the divisor.

(forn) on X for a general femy has the form:
(for)=Z + N
~where N is the non compact part of the divisor.

We say that X has reduced fundamental cycle if Z=E, or ¢; = 1, for

all i. There is the following characterization for X to have this property.



Chatactetisation(1.2):

X is a rational surface singularity with reduced fundamental cycle
4
T is a tree, EiMP1 and for all i one has —Ei.Eiza{j#i:EiﬂEjMD}
In particular for any tree I' we get examples by choosing the self
intersections sufficiently negative.
With the help of hyperplane sections one can give an alternative

characterization of this class of singularities.

Definition (1.3):

+H :=(1,2,...,m}
yp:Cm — C,peH, coordinate functions on €™
_ m
T \/p( HYpCC
= the union of the coordinate axes Yp:={yq=0, q*p}

Charactetiaation (1.4) :

Equivalent are:

1) X is a rational surface singularity with reduced fundamental cycle
of multiplicity m. |

2) X is the total space of a one parameter smoothing of Y, i.e. we

a cartesian diagram

Y C— X

| b
{0} —— T

where T is a small disc in C.

proof : Any normal surface singularity can be considered as a one
parameter smoothing of a generic hyperplane section. The generic
hyperplane section of a rational surface singularity is isomorphic to
Y exactly when the fundamental cycle is reduced (see for instance
[(B-C14.31.). On the other hand X can be considered as a small

deformation of YxT. As YxT is weakly rational in the sense of

-g_



[Strl14.11, it follows from the semi-continuity of Pg (see [Str.2.5.281)
that X has to be weakly rational. As the total space of a smoothing

of Y, X is normal, hence rational. ®

'We now consider the divisor (xom) on X. We can write:
(xom) =E+ ¥ HHy

where Hp is the strict transform of Yp. Each Hp, peH intersects a
unique exceptional curve Ep, and thus we get a map +{ — I'. Note

that the number of Hp's intersecting an F in T is -Z.F.

Definition (1.5):

The extended (dual) resolution graph T, is the tree obtained by adding

for each pcH a vertex connected to Ep.

So the set of endpoints of I'y, is “+ and the self- intersection of any

F in T is the number of vertices of Iy adjacent to F.

Definition (1.6):

We define the length function [ by {:TxI' —N;
(F,G) —svertices of C(F,G)
and the overlap function p by o:T'xI'xI' —N;
(F,G,H) +— svertices of C(FH)[\C(G,H)
Here C(F,G) is the chain from F to G (including end points) in T.
By composition with the above map L — T we get maps:
HxH —— N
HxHxH —IN

etc, which we also denote by { and p.

- 10 -



Example (1.7):

Consider the following dual resolution graph:

P o
O~0==0~—0~=0 +
' r s
F X—0—0—0——X—0—0

0—0--0—0--0--0
t
o = (-2)- curve ; x=(-3)- curve
Then one has: {(p,q)=9,I(r,5)=3, etc.
olr,t;q)=3, o(q,t;p)=5;0(p,q;t)=6, etc.

It is not hard to see that the extended resolution graph I', is determined
by the function ! :#HxH —N or by the function p :HxHxH —N.
However, one does not need to know the complete [ or o function to
determine Te. In fact the knowledge of 2m-3 particular lengths

determine Te.

Proposition (1.8):
Let peH and {qy,q9,...,qp,-1}=FH-{p}.
Let'be given a set A of 2m-3 numbers

j¢N,i=1,2,...,m-1

o;jeN,i=1,2,...,m-2
with the conditions that g;<{; and ;<4 for i=1,2,...,m-2.
Then there is a unique tree I'((A) with the following properties:
1) Up,qp) = {
2) p(qi.qj;p) = min{py lisk<j} for i<j.
Conversely, any tree I', is equal to some Ie(A) for some A.
In particular, for any pet, the tree I, is determined by the numbers
l(p.q), qeH-{p} and polr,q;p) r.qeH-{p}.
proof : Given a tree I'y such a set A can be obtained as follows:
Step 1) Choose a p and qy « +H arbitrarily and put /;=l(p,q;)
Step 2) Suppose we have chosen q1,...,qkthen choose qy 4 such

that o(qy.qy.q:p)=max{oe(qy,rp)iret-{p.qaq,. ... qpht

Step3) Put U, 1=l(p,qy,q). ex=0lqy.ay4q:P)-

Here we strongly advise the reader to make a picture. b

_'I_



1.8 “The Blow-up “Teee

The second tree we consider can be defined for any rational surface
singularity X. Furthermore we introduce the so called height function
ht on T that will be used also in 1.C. In order to define these concepts

we recall a result of Tjurina.

Theorem{1.9): [Tjl

Let b: X — X be the blow-up of X at the singular point.

Let T :={Fel:Z-F=0}, and let X/ be the space obtained
from X by blowing down the curves of f . Then there exists an

isomorphism:

X s /T
So we see that X has a finite number of rational singularities, each

one having as resolution graph a connected component of Ty. This

result leads to the definition of the blow-up tree of X:

Definition (1.10):

a)A filtration Ty on I' is defined inductively by:
ry=T
Iy ={FeTly_y: F-Zp_1=0}, Zy_4 being the fundamental cycle of TI'j_;.
b) The vertices of the blow-up tree consist of the collection of the
connected components of the I'p for k=12,....
c)The height function ht on the vertices of BT is given by:
ht(v) : = sup{k: vC Iy}
d) The vertices v and w are connected by an edge in the blow-up
tree BT iff ht(v) -ht(w) (=1 and vCw or wC v.
e) We also define the height function on the vertices of T by
ht(F) = sup{k:FeT}}

_IZ_



f) For a vertex v of BT we define X(v) as the singularity obtained
from X by blowing down v to a point.

g) By abuse of notation we can convert any invariant of a singularity
to a function on vertices of BT by putting:

invariant(v): = invariant(X(v))

&xample (1.11): We consider the resolution graph of (1.7). Below
we give the blow-up tree, together with the height function and the

multiplicities of the singularities corresponding to the vertices.

ht = § 209 02
ht = 4 3 /02
ht = 3 4 /
ht = 2 40 02
ht = 1 5

1.C. Limit “Teees

Limit trees are used in §3 and 4 to handle the deformation theory of
rational surface singularities with reduced fundamental cycle. As
explained in the introduction a limit tree serves to make a distinction
between "long" and "short" chains in the resolution graph. The formal-
ization of this idea resulted in the following definition of a limit tree

as a tree with certain properties.

Definition (1.92): Let X be a rational surface singularity with reduced
fundamental cycle,“H as in (1.3) and ¢ as in (1.6).

A limit tree T for X is a tree with the following properties:
0) The vertices of T are the elements of 4
1) If {p.r} and {q,r} are edges of T then:

e(p,q;r) < plq,r;p)

p(p,q;r)) < plr,p;q)



2)If r and s are on the chain C(p,q) and {p,r} is an edge of T then:
olp.q;r) = o(p,s;r)
3)If p,q and r are not on a chain in T and d is the centre of p,q,r
(i.e. the vertex C(p,q)() C(p,r) (1 C(q,r)) then:
elp.girzelp.q;d)

The existence of limit trees is guaranteed by the following:

Definition (1.13) +

Consider a rational surface singularity with reduced fundamental cycle,

and dual graph of resolution I'. A limit equivalence relation ~ is an

equivalence relation on the vertices of T satisfying the following two

conditions:

a) Vertices F with ht(F) = 1, i.e. with Z.F <0, belong to different
equivalence classes.

b) For every vertex F with ht(F) = k+1, k21, there is exactly one vertex
G intersecti‘ng F and ht(G)=k with G ~ F.

That such equivalence relations exist follows from Tjurina's theorem
(1.9) and the definition of the height function.
Consider the tree I'/~. In every equivalence class there is exactly
one exceptional curve F, with Z.F< 0. For every such F take an
arbitrary tree T(F) with -Z.F vertices. and replace the equivalence class
of F by T(F) in any way you like to get a tree T. We define a
bijection:

p ¢ ¢ vertices of T
Every p ¢H corresponds to a curve E_ with z’..‘Ep < 0, hence corresponds
to a vertex of I'/~. There are ‘“p curves Hq intersecting Ep. Now
take any bijection between those curves Hq and the vertices of T(Ep).

o Pl



Theovem (1.14) :
The tree T thus obtained is a limit tree for X.

prook:
Property 0) of (1.12) is not worth mentioning. It is obvious from the
definition of limit equivalence relation that equivalence classes are
connected. To prove property 1) of (1.12) we first remark that if E, =
Ep or Eq, then o(p,q;r)=1, so there is nothing to check. The fact that
r lies on the chain from p to q in T means that Ep and Eq lie in
different connected components of I' \{ equivalence class of E;}. As
equivalence classes are connected it follows that the chain from E.
to the center C of p, q and r in I belongs to the limit equivalence
class of E,. It follows from b) in the definition of a limit equivalence
relation that on any chain starting at E, within the limit equivalence
class, the height function is monotonically increasing with steps one.
Hence:

ht(C) =l(E,,C)=p(p,q;r)
As ht(Ep)=ht(Eq)=1 and the height difference between two connected
vertices of T is at most 1, it follows that:

olq,r;p) = l(Ep.C)zht(C)

olr,p;q) = l(Eq,C)th(C)
So 1) is proven. We will be more sketchy with the proofs of properties
2) and 3).
Let €©(r,s) c€(p,q) .The sub-tree of T, spanned by p,q,r and s can

a priori be of one of the following two types:

r
o

0=0

wo T e~

p

\

q
(Here the lines in the graphs do not indicate edges of Ty, but rather

= ,{_



arbitrary chains; so it is a qualitative picture of the sub-tree. In
particular a=b is allowed.) But if A. would occur with a*b, a would
belong to the limit equivalence class of r, because r ¢ C{(p.,q).
Consequently, b would also belong to this limit equivalence class, and
hence s would not be on €(p,q). We conclude that B. must be the case.
But there we read off immediately that o(p.q:r) = l(a,r)=p(p.s;t), which
is 2). Now let p,q,r not be on a chain, and let d be the centre of p,q

and r in T. Again there are a priori two cases to consider:

r
C. D.

0 0

Q_Q/c‘ m\
Q.O/c‘ p,\

r q
But because d is supposed to be the centre, it means that a and hence
b belong to the limit equivalence class of d. In C. we have:

elp,.qir) - olp,q;d)= Ua,r)-la,d)=l(b,r)-L(b,d)=p(p.d;r)-p(p,r:d) 20

because d¢C(p,r). Case D. is similar and left to the reader. b2

&amplc (1.45)

Consider the resolution graph of (1.7):

0 = (-2)- curve ; x=(-3)- curve
The ovals indicate the limit equivalence classes.

The resulting limit tree T is:

o=
Ouwn

\s
/

In this example the limit tree is unique, but the limit equivalence

relation is not.

- 3w



One can consider a limit tree T, together with the data:

* for all {p,q} ¢ e(T) the number {(p,q)

* for all {p,r}and {q,r}ee(T) the number o(p,q;r)

We will use the notation (T,{,p) to denote exactly these data.

Lemma (1.46) :
The data (T,[,p) determine the (extended) resolution graph i
proof :
Consider p, qe¢H, and assume {p,q}not an edge of T. Then choose
any r ¢ C(p,q)-{p.q}. From the defining property (1.12) 2) it follows
that we know o(p.q;r). As clearly

l(p,q) = Lp.n)+l(p,r)-2.0(p,q;r) +1
we know l(p,q) by induction on the number of vertices in C(p,q).B

So from (T,l,p) we can determine the resolution graph I', and from.

A
I' one can determine I'= I'9,I'3 ,...and the whole blow-up tree as in
1.B. But in fact there is a direct construction of a tree T (together
with data {,p ) whose connected components are limit trees for the

connected components of I , i.e. the singularities of the blow-up.

Definttion (1.47) s
We define an in general disconnected tree f, and a map of trees
b:T —T
by the following procedure: |
# For any p «v(T), we put
rys &S olrs;p) > 1
This is an equivalence relation, because of the tree numbers

olr,s;p), ols,t;p), p(t,r;p) the smallest two are always the same.

* We put: b'l(p):=( B equivalence classes}.

—/; -



* Let v(f) ﬁgpev(T) b-l(p).We have an obvious map
b:v(T) — v(T)
*Let p and 4 ev(f) and let p = b(p) and q = b(Q)
Then we let {P,§}ee(T) if and only if:
1) {p,q}eel(T)
2 pecq andqep
3) lip,q) 23
* For p, q and r in the same connected component of f we
define: i\(ﬁ,é\) = l(p,q) -2 and §(p,q;F) :=plp,q;r) - 1.
* Redefine v(f) by throwing away all vertices not connected to any

other vertex.

Proposition (1.18)

If (T,l,p) is a limit tree for I', then (f,l’\,é\) is a limit tree for f=l“2

proof : We have to define a map

v(T) —Ty-T3; Fr—Ep
such that the properties of (1.12) are satisfied. Ef; is defined to be
the the unique curve of I' intersecting Ep ,p=b(p), such that Eﬁ lies

on the chain in T from E, to E, , where q ¢ p. This is independent

P q
of the choice of q, because for any other re¢p we have pfr,q;p)> 1, and
so the chains from r to p and q to p have at least E{; in common.

Because clearly o(EF’;,Ea 1B )=Q(Ep Eq ;E, )-1, etc, the conditions

q’
of (1.12) are satisfied. ®

A
Although the above construction of T looks quite complicated, the

procedure is in fact very easy using diagrams. We will illustrate this

with example (1.7).
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Example (1.19) s

We give the complete sequence of blow-ups of the limit tree (1.15).
Each picture corresponds to the singularities of the blow-up tree of
the indicated height. Note that the splittings in connected components
exactly correspond to the vertices of the blow-up tree (1.11).

A big 5,7 etc, attached to an edge is the corrsponding value of the
length function {. Small numbers 3,1, etc, attached to corners are
the corresponding values of the p function. So for example

03—3-—5—0 means [(p,q)=3, o(p,q;r)=2, l(r,q)=5.

p r q

....................................................................................................................

....................................................................................................................
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S
> w
o
-
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ht = 3
ht = 2
9
437 3
ht =1 3 1
10

....................................................................................................................
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§2 Eguations

Consider a rational surface singularity X of multiplicity m and with
reduced fundamental cycle and let x be a general element of my. As
mentioned in (1.4), the space Y C X defined by x=0, is isomorphic to
the union of the coordinate axes in C™ . Furthermore, X can be
considered as the total space of a smoothing X X 3T of Y. As any

deformation of Y, it is then induced from a versal deformation

] —+B of Y by a map j. This means that there is a cartesian diagram:
X —Y
T —473B
For our purposes it is of importance to have an explicit description
of such a versal deformation of Y. It seems that D. S. Rim was the
first to have computed this (see [Schal). Various other authors also

have considered this problem (see [F-P1, [Al], [St21). In the following

theorem we describe the result.

Theotem (2.1):
Let Cm(m—l) be an affine space with coordinates apq (p, qeH,prq
and let C(apq } be its local ring at the origin.
Put ¢olp,q;r): = T p.q3T
Ulp,q,r,s):=¢l(r,p;q@)olr,q;p)-¢(s,p;q) o(s,q;p)
p.q.r,s pairwise different.

D: = ideal generated by the U(p,q,r,s) C Cla, .}

Pq
Let Bc ™™D pe the space defined by D and let Op =Clapy /9D

be its local ring. Furthermore, define elements
Spq =o(rp:a)elrap) ¢ Op for any rip.q.

Finally, let Y c C™ xB be defined by the equations:

(yp+ aqp)(yq+apq) - qu =0

Then the map Y — B is a versal deformation of Y.
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As a corollary we get the following

Proposition/Definition(2.2) s

Let X be a rational surface singularity with reduced fundamental cycle.
Let €Mm-DH pove coordinates x, Zpq P4 eH, ptq.
Then there exist functions

S . olp,q;r) ¢ C{x}

Pq
with ¢ anti-symmetric symmetric in the first two variables,

that satisfy the Rim Equations:

R(p,q,r):= Spq - #(r.p;:q)elr,q;p)=0
C(p,q,r;s):= ¢(p,q;:s)+elq,r;s)+o(r,p;s) =0

such that X is described by the Canonical Equations:

Q(p.q):
Lip,q;r):

ZpqZqp ~ Spq =0

Zor “Zqr " ¢(p,q;r)=0

Furthermore, none of the Spq or ¢(p,q;r) are identically zero.

peook: Let X be a rational surface singularity with reduced fundamental
cycle. As already mentioned above, from the versality of the family
Y — B and (1.4) we get a map j: T—B. On the level of rings we
get a map

i*' Cla,,} —C{x}

Pq
Put apq(x) = j*(apq)eC{x). Then define:

(x)
o(p,q;r) (x): = apr(x) - aqr(x).

Spq(x):=@(r,p;q)cp(r.q;p)

Zpq ¥ Yq * %pq

The Rim Equations and the Canonical Equations now follow immediately
from (2.1). Because X is a normal surface singularity, OX has no zero

divisors, so Spq is not identically zero. ps
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The above system of equations for X is very simple and symmetric,

Cm+1

but does not give a minimal embedding in . An intrinsic way to

describe a minimal embedding is as follows:

Definition (2.3):
Let O=C{x,zpq} be the local ring of cmim-1)+
The second set of Canonical Equations, the "linear equations”
L(p,q;r) =0, define a smooth space germ A inside cmm-0+1 o
dimension m+1. We put:

Og: =0/ideal generated by the L(p.q;r).
So X is minimally embedded in £ and its ideal is given by the first
Canonical Equations

Qlp,g)=0 in Og

We will most of the time consider OX as quotient of O‘, rather
then of Q.

The space £ can be identified with €Ml with coordinates X.Yp in

various ways. For example one can choose for every p ¢ #H a q(p)eH \{p}

and put Yp=Z The linear equation L(r,q;p) =0 can then be seen

qlplp

as a definition of the function Zyp as Z +p(r,q(p);p). By substition

alpp
of all these definitions in the equations Qfr,s)=0 we get a minimal
system of equations in the coordinates X,Yp- These equations, however,
are rather complicated and are not easy to handle. Furthermore,
theorem (2.7) shows that the coordinates Zpq have a natural interpre-
tation on the resolution X of X. So it seems wise to work as long

as possible with the Canonical Equations.

Lemma (2.4)

Assume that (Spq,«p(p,q;r)) satisfy the Rim Equations. Then:

1) Ulp,q,r,s) =¢olr,p;:q)elr.q;p) -¢(s,p;q)els,q;p) = 0
2) Vip,q,r,s) :=¢(r,s;p)e(s,p;q)-9(s,r;q)elr,q;p) = 0

Assume furthermore that the z_ . satisfy the Canonical Equations.

Pq

Then: Any product z s r¥s can be written as a unique C{x}- linear

pr Zq
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combination of z and a function of x only. More precisely, one

pr ' Zgs
has:

3) Zps zqr-( (p(p,r;s)zqr +9(q,s ;r)zps)ﬂp(p,r;s)cp(q.s i1)-S,s=Qlr,s) in Og
Special cases:

4) Zns Zpr -(tp(p.r;s)zpr +o(p,siPzpg) =Qlr,s)  in Oy
5) ZprZeg —cp(p,q;r)zpq=Q(r,q) in Og

pwo‘: Clearly, U(p,q,r,s) = - R(p,q,r)+ R(p,q,s). Furthermore, a direct
computation shows that
V(p,q,r,;s) = Ulp,q,r,s)-C(r,p,s;q)elr,q;p)-Clr,q,s;p)o(s,p;q)

hence 2). The other things we leave as excercises to the reader. =

We now will prove the converse of proposition (2.2).

Proposition (2.5):

Let a system of functions (Spq ,9(p,q;r)) satisfy the Rim Equations,
and let X C £ be the space defined by the Canonical Equations. Then
X is a rational surface singularity with reduced fundamental cycle iff

Sp,q *0 for all piqet.

prook :

The Canonical Equations, belonging to a system of functions

(Spq ,¢(p,q;r)) that satisfies the Rim Equations, define a space X that

is the total space of a one-parameter deformation of Y. So from

(1.4) it follows that X is rational with reduced fundamental cycle if

the general fibre X, t small +0 is smooth. The equations for X; are:
ZpqZqp ~Spaq =0, qu=Spq(t)e C
zpr-zqr=f(p,q;r), fp,q;r)=¢(p,q;r)(t)eC

and we may assume quto. The projective closure Z of X; in P:=

P (L=t DC wAP™ s given by the equations: '

' ZpgZqp~Spqi-=0

zpr—zqr=f(p,q;r).u

We will show that Z is a rational normal curve of degree m, cf.
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[Wal, Cor. 3.6]. Choose a p and a q #p ¢#l. Let (s:t) be homogeneous
coordinates on P!. Consider the map o: P! — P™ | defined by the

following formulas:

= «l TP+ = 20 o =
Zpq = S I; Zgp = Spq 4 11; u = stll
Zor = Spr 52 t.(l’I/Lr ) ;T ip,q
Here I1:=II ., p,qu‘ Lp:= qu.t—f(q,r;p) s
(Because Zps (s¥p)and Zap form a coordinate system for £, this

suffices to define the map.) From the assumption that all the s ¢ #0,
(and hence, via the Rim Equations, f(r,s;t)*0) it follows that all the
L, are different and unequal to s or t. Hence Im(c) is a rational
normal curve of degree m. Furthermore, we leave it as a straight
forward excercise to the reader to check, using the identities (2.4),
that Im(c) C Z. But because X; is a flat deformation of Y, it follows
that Z is Cohen Macaulay of multiplicity m. Consequently, Im(c)=Z,

and hence X; is smooth. ®

So a solution (Spq,tp(p,q;r)) of the Rim Equations determine via the
associated Canonical Equations a rational singularity X with reduced
fundamental cycle. We will now show how to determine the resolution
graph T of the minimal resolution n: X — X out of the Spq- It will
turn out that ¢(p,q;r) and the Zpq also have a very natural interpre-

tation on X. First we need a definition:

Definition (2.6):

Let X be a rational surface singularity with reduced fundamental
cycle, and dual graph of the resolution I'. For p,g«H we define a

divisor qu on the minimal resclution as follows:

Zcpq :=Z o(F,p;q)F
Fel

= 7% 4 ; "
Zpq = Z5%q * 2, o(E,pia)H, +Hp - Hy
re
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“Theorem (2.7):
Let X be a rational surface singularity with reduced
fundamental cycle, defined by the equations (2.2).

Let m: X — X be the minimal resolution. Then:

A. (zpqon) = qu

B. The length function :HxH — N is determined by:
lp,q) = ord (Spg) +1
C. The overlap function o:HxHxH — N is determined by:
, olp,q;r)= ord(¢(p,q;r)
(Recall that the length function determines Iy, hence T, cf.(1.8)).

proof: We first note that the function z_, is a parameter on the line

Pq
Yq. Indeed, restricting the function Zpq to the generic hyperplane

section Y given by x=0 we get the function Yq which is a parameter
for Yq. It follows from the equation Q(p,q) =0 that the support of

the divisor of Zpq is contained in Y and that Zpq vanishes with order

= ord (Spq) on Yp. Consider the extended resolution graph I',see (1.5).

The vanishing order of the function Zpq along the curves

corresponding to the vertices of Ty defines us a function:

o :V(re) —N

Pq
From the above remarks it follows that:

opq(q)=0 and pq (Eq)=1.

For all vertices v of T, consider adj(v):= { w: {v,w} an edge of T },
and let a(v) be the number of elements of adj(v). Because (zpqon)-F

= 0 for all exceptional curves F, it follows that o, is harmonic, i.e.:

Pq

= > 0pqW)

w e adj(v)

a(v) °pq

for all vertices v of T'CT,. For such harmonic functions on a tree the
following Monotonicity Principle holds:

Every chain on which a harmonic function h is strictly monotonic,
can be extended to a maximal such one, which has its end points in

the end points of the tree I'y.
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Consider the chain C(q,p) from q to p in [, . We claim that for every
chain C in I'y which has only one vertex with C(q,p) in common the

function °pq is constant. If not, there is a subchain C'of C (connected

to C(q,p) on which Opq is strictly monotonic, say increasing. By the

above principle, we can extend C' to a maximal chain D on which %pq

isincreasing. Let r<# be the endpoint of D, so the vertex of T e On
which OpqID takes it maximum. In particular we have that %pq (r) >

°pq(Er ). But from equation (2.4) 5): z = «p(p,r:q)zpr it follows

paZqr
that:

pq(r)- °pq(Er )= Opr (r) —opr(Er )—oqr (r)+ Ogr (E)) =0-1-0+1 =0

which is a contradiction. So o

(o]

pa must be constant on chains branching

off from C(q,p). From this it follows that the restriction of Opq to

t
q
C(q,p) is also harmonic, and hence the values increase with steps one.
This proves A. and also B., because or'cl(Spq )=opq(p)=l(p,q)+l.

Statement C. then follows most easily using (2.4)5). &8

Remaek(2.8) :

Some of the equations get very natural interpretations in the light of
(2.7). For example, the Rim Equation R(p,q;r) just means that the chain
from p to q can be seen as being composed of C(p,d) and C(d,q),
where d is the "centre" C(p,q)(\Cl(q,r)(\C(r,p) of p, q and r. Because
d is counted "twice", the order of Spq is l(p.q)+1, rather than l(p,q).
We suggest to the reader to find similar interpretations for the
equations (2.4)2) and (2.4)5).

The results of (2.5) and (2.7) imply the following:
Given any I" and any system of functions Spq ,o(p,q;r) e €{x} such that

a) ord (¢(p,q:r)) = p(p,q;r); ord( Spq)=l(p,q)+1
b) The Rim Equations are satisfied

then the Canonical Equations (2.2) define a rational surface singularity
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with reduced fundamental cycle and resolution graph I'. We will now

indicate how for a given I’ we can find all Spq and ¢(p,q;r) as above.

Algorithm (2.9)

Step 1: Choose as in (1.8) a set A such that T =To(A).

Step 2: Choose arbitrary functions Spqi ¢ C{x} of order li+1.

Step 3: Choose functions ¢(q;,q;,1;p) of order p;.

Step 4: Put @(qi,qj;p) =Zi< k<jq>(qk,qk+1;p) for i<j.
Now ordx(cp(qi,qj;p))zp(qi,qj;p) and for an open dense set
U c(CHHM2 of o's in Step 3) ‘we have equality.

Step5: Forget about the numbering of the g;. In the sequel r,sand t
are distinct elements of #\{p}.

Step6: Define ¢(p,s;r):= Spr / ¢(r, s;p). Note that this division is
possible because o (r,s;p)<p(s,p;r) by steps 4.

Step7: Define S g :=¢(p,r;s)o(p,s;r).

Step 8: Define ¢(s,t;r) .= -{p(p,s;r) +olt,p;r)}

prook:

Necessary:

If the cocycle conditions C(r,s,t;p) are to be satisfied for all r,s and

t, then we have no other choice for ¢(q; qj ;p) then the one in Step 4.

Because the order of a ¢ has to be the corresponding p, we have to

restrict the ¢(q;,q;.1 ; P) of Step 3) to the open dense set u.

Sufficient:

We have to show that for this choice of ¢'s and S's all the Rim

equations are satisfied. It suffices to show that:

U(s,r,p,t):  olp,r;s)elp,s;r) - olt,r;s)elt,s;r) = Ofor t +p.

By the definition in Step 8:

olt,r;s) olt,s;r) ={p(p,s;+ ¢l(t,p;}{o(p,r;s)+olt,p;s)}
So we have to show that:
olp,s;;no(t,p;s) +olt,p;r)elp, r;s) +olt,p;r)elt,p;s) =0
By Step 6 we have that the left hand side is equal to:
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Sprsps{(p(r,s;p)qcp(t,s;p)~1 + cp(t,r;p)_igo(s,r;p)'1 + (p(t,r;p)_l‘p(t.s:pfl}

Now the last two terms inside the brackets is equal to
o(t,r;p) Mols,r; p) 1, olt,s;p) 1) =
@(t.r;p)_l( lt,s;p)+e (s,r;p)lols ,r;p)~1<p(t,s ;p)'1 =
o (s,r; p)_1 o(t,s;p) -1 by Step 4.

Now it follows easily that the Rim equations are satisfied. ®

Example (2.10):

Let X be a rational surface singularity with dual graph of resolution
as in example (1.7). We will determine the explicit equations of X in

€8 We will follow the steps of (2.9):

Step 1) We take p = p, q1=q,q9=r,q3=5,q4=t. We relabel them as

0 1 2 3 4
Thus =9
ly=11 0g=7
{3=13 pg=11
{412 p3=6
Step 2 and 3) We choose
Sop = x'°

Spo= X2 ¢(1,2;0)=x7
Soz= x4 e(23;0)=xl1
Soa= x 0(3,4;0)=xb
Step 4) Using the cocyle condition we get:
¢(1,3;0) = -

0(2,4;0)=x0+x11 0(1,4;0)=x0 + x7 + x1!

Step5 and 6) Compute ¢(0,i;j) by division. The result is:

0(0,1;2) = -x° 0(0,1;3) = -x"/U+xh)  0(0,1;4) = -x7/(H+x+x5)
0(0,2;1) = x3 0(0,2;3) = -x3 0(0,2;4) = -x’/(1+x°)
000,3:1) =x3/(1+xH) 0(0,3;2) = x ©(0,3;4)= -x/

0(0,4;1)=x4/(1+x+x%)  0(0,4;2) = x8/(1+x°) 0(0,4;3)= x8



It is now possible to write down equations for X minimally embedded.
We choose as coordinates X, 201,202,203.204 and zyg .

We get the following ten equations:

Q(0.1): 201210 - X10=0

Q0,2): zoz(z1o+x7)—x12 =0

Q(0,3): 203(zlo+x7+x“)-xl4‘ =0

Q(0,4): 24 (210 + X0 +x7+xih)-x13 =0

Q(1,2): zg1z2g2 * xszm - x3z02 =0

Q(2,3): 209203 +x3 zgg - Xzg3=0

Q(3.,4): 203204 +x7 zg3 - x8 zgg = 0

Q(1,3): 201203 +(X’ 70+x*))zgy-(x371+xH))zp5 = 0
Q(2,4): 209204 +(X 7(1+x9) )29 - (x0/(1+x5))zg4= 0
Q(1,4): 201204 +( X7/ U+x+x3) )2y -(x¥/(1+x+x5) )24 = 0

As solutions (Spq,go(p,q;r)) to the Rim equations correspond to Rational
singularities with reduced fundamental cycle, one expects families of
solutions to the Rim equations to correspond to flat deformations of

X. Of course, this is the case and completely trivial.

Lemma (2.11)

Let X be be described by the canonical equatons (2.2) belonging to a
solution (Spq ,0(p,q;r)) of the Rim Equations. Let
Xg —$
be a flat deformation of X over S. Then there exist functions qu "
¢ (p,q;r) ¢ OS {x} that satisfy the Rim Equations qu -¢(r,p:q)Y(r,q;p)
=0 and such that Xg —S is isomorphic to the deformation of X
described by the Canonical Equations belonging to (qu ,O(p,q;r)):
Zpq Zqp —qu = 0; Zor “Zgr -¢(p,q;r)
Conversely, any such system (qu , (p,q;r)) determines a flat defor-

mation of X.
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prook: Xg can be considered as a deformation of Y over SxT by lifting
the function xcQOy to OXS' So it is induced by a map SxT —B. Such
maps correspond exactly to solutions of the Rim Equations in the ring

OS{X} x

Cotollary (2.42): (cf. [Ko 1,3.4.5, 3.4.9) ‘
The class of rational surface singularities with reduced fundamental
cycle is closed under deformation.

ptoof: Obvious by (2.2),(2.5) and (2.11). =

The simple description of flat deformations of X in terms of pertur-
bations of the (Spq,q:(p,q;r)) as in (2.11) , will also be used in §4.
Furthermore, lemma (2.11) can be used to find an interesting

deformation that will be used in §3 and §4.

Theoeem (2.13) s

Let X be a rational surface singularity with reduced fundamental cycle.
Consider the first blow-up b: i —X. Let Xy, ... ,)(p be the singular
points of X. Then there exists a one- parameter deformation Xgof X
on the Artin component such that X; for s not equal to zero has p
+ 1 singular points isomorphic to Xl’ s Xp and the cone over the

rational normal curve of degree m(X).

prook:
We look at the equations of X given by the Canonical Equations (2.2).
When we write ¢(p.q;r) = xo (p,q;n),
_
Spq x“ S Pq
and put ¢(p,q;r) =(x-s )o(p,q;r)

PR
qu = (x-s) Spq
then the system (qu,(b(p,q;r)) satisfies the Rim Equations. Hence by
(2.11) it corresponds to a one-parameter deformation of X, given by

the equations:
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= (x-s)2§pq

=(x-s)o (p.a:r)

paZap
pa " Zar
For s #0. s sufficiently small, one has a singularity at x=s, Zpq =0 Vpg,
which by an application of (2.7) can be recognized as the cone over
the rational normal curve of degree m(X).
At x=0 one performs the coordinate transformation:
z., —(x-s)z

Pq Pq
and upon dividing the quadratic equations by (x-5)2 and the linear ones

for all p and q

by (x-s) one gets the equation of )2 in the x—chart, hence has singu-
larities as asserted. It is a bit boring to check that these are all
singularities on the general fibre. To show that this deformation is
on the Artin- component we show that it has simultaneous resolution.

One blows up in the curve z_, = 0, and x=s, to see that for s+ 0 one

Pq
resolves the cone over the rational normal curve, and for s= 0 one
regains X. As after one blow up one is left with a trivial deformation,
which obviously has simultaneous resolution, it follows that the above

deformation has simultaneous resolution. b

Remaek (2.14) : By openness of versality it follows that there exists
a one parameter deformation of X on the Artin component, with for
every vertex v of BT(X) a rational normal curve of degree m(v) on the
general fibre. We leave it to the reader to write down such a deformation

explicitely.
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§ 3. S’Mca;‘ln‘l-uuamllmaaomﬂﬂ:.

In this paragraph we study the modules T;( and T>2( of a rational surface
singularity X with reduced fundamental cycle. These modules, which
are finite dimensional vector spaces over C, play an important role
in the deformation theory of X: T;( describes the infinitesimal
deformations and T)z( is the space that contains all the obstructions
to extend given deformations to one defined over a slightly bigger
space. We refer to [Art 21 and [Schl 21 for the basic facts about defor-
mation theory. Let us recall the definitions of T)]( and T)Z( for a
- N. Let X be described by an ideal I=(fy,....f}))

p
C O:=C{xl,...,xN} and put OX = QO/I1. Consider the free module

general space germ X C C

F =€Bi£1 O.e; on generators e;, i=1,...,p, and define R to be the kernel
of the natural map F —I induced by e;—f; . Hence we have an exact

sequence:
0 R —F —1—0 (*)
So R is the module of relations between the generators f; of the ideal
I, and it contains a sub-module Ry, generated by the Koszul-relations
f; g —fj e; . Taking Hom we get a map (where Hom=Homo ):
Hom(?,ox) — Hom(R ,Ox)

The image this map is contained in the sub-module

Ax:=H0m(R/R0,oX).

We let « be the induced map « : Hom(FF,Oy) — Ay.
The kernel of this map «

Ker(x)=Hom(I,Ox)=Homy (1712, Oy )=: Ny

and is usually called the normal module of X in cN.

The obstruction space is by definition the cokernel of .

Coker(o) =: T%
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Denoting the vectorfields on CN by ©, there is a natural map B

B: 9®OX — Ny ; $@1 — (£ — 3(f))

The space of infinitesimal deformations is by definition:

e |
Coker(B)=: TX

So elements of both T! and T2 are represented by classes of
homomorphisms: For T, homomorphisms I=F/R — OX

ot homomorphisms R/Ro — Oy .
It is our aim to describe T)l( and T)% as explicit as possible in the
case that X is a rational surface singularity with reduced fundamental
cycle. In 3.A. generators for T! and T2 are constructed directely in
terms of the equations of X. Furthermore, dimension formulae are
given. 3.B. is devoted to the C{x} module structure is studied. Moreover
a second set of generators for T is constructed, and C- bases are

\

given.

3.A. Gienetators

We start with a description of the sequence (*) in our case.

Definition/ Proposition (3.1) :

Let X be given by the Canonical Equations Q(p,q)=0

as a subspace of the smooth space £ as in (2.3).

Let I ¢ O= O‘ be the ideal generated by the Q(p,q) as in (2.3).

Let ?=@p*qeﬂ Q.lp,q] the free rank (?)—module on symmetric

symbols [p.ql=[q,pl, p#q, and let ¥ —1 be the map induced by
[p,ql —Q(p.q).

Let R C? be the sub-module generated by the elements
[p,q;rl:= zrp[q,r] “Zypq [p,rl1+¢(p,q;r)ip,ql

(p,q.rdistinct elements of # ; remark that [p,q;rl+lq,r;pl+[r,p;q] =0).

Then the sequence 0 — R +F 1 » 0 is exact.
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proof : In other words, the [p,q;r]l generate the module of relations.
A direct computation of
Zyp Q1) -2,,4 Qlp,N+0(p.q;r)Qlp,q)
gives, after several applications of linear equations, the expression
- (zrpR(q,r,p)—zqu(p,r,q )+<p(p,q;r)R(p,q,r))
where R(p,q;r):=Spq -¢(r,p;q)e(r,q;p) is the Rim Equation as in (2.2).

So we see that [p,q;r] is a relation exactly because the Rim Equations
hold. That these [p,q;r] actually generate the module of all relations,
follows from the fact that [p,q;r] is a lift of the relation

yp(yqy r)'yq(ypyr)
between the equations of Y, and these relations are easily seen to

5

generate the relation module for Y.

For the rest of this section we fix a limit tree T for the resolution

graph T of the minimal resolution n:X — X, as in (1.C).

Definition (3.2)

Let T be a limit tree and let p and q be two different vertices of T.
* We define sub-sets of“H as follows:
£(p,q) = {reH :pcClr,q)}
Rip,q = {seH:q «Clp,s)}
M(p,q)=H-Lp.q9-R(p,q)
Here C(p,q) denotes the chain from p to q(endpoints included)in the
Iimit tree T.
* We define numbers as follows:
1(p.q) = max {pola,q;p): a ¢ L(p,q) }
r(p,q) = max { p(p,c;q): ¢ ¢ R(p,q) }
s(p,q) = max { l(p,q), r(p,q) }
m(p,q) = min { p(p,q;m): me M(p,q) }

Usually, if no confusion is likely, we abbreviate £(p,q)
to £, etc. We think of £, R and M as the sets of vertices of T to
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the left , the right or between the vertices p and q. respectively.
Notice that p ¢ A(p,q) and q ¢ R(p,q), and that the vertices of M are

not necessarily on the chain €(p,q). M= O means that {p,q} is an edge
of T.

Definition (3.3) :
A homomorphism h : F ——DOX is called a Jleft-right homomorphism
(with respect to the pair p,q), if:

h(lrs1) =0 r, s cAUMorr, sc MUR

If we denote by [r,s1” the homomomorphism F ———-bOx dual to the
inclusion Oy —%F ;1+1r,s1(s0 [r,s17(La,c])= 8, 5 85 ¢ + &, ¢ 85 ),

then such a left-right homomorphism h can be represented as:

h= zr(k,sel h,g [rs1” h,s=h(lr,s]) e OX

Definition (3.4)

We call a relation [a,b;c] separated if the elements a, b and ¢ belong
to different sets £,M,R and non-seperated if it is not seperated.
We let R,s ¢ R be the sub module generated by the non- separated

relations [a,b;c].

Lemma(3.5) s
Let p and q be vertices in a limit tree T and h : ¥ —QOy a non-zero

left-right homomorphism with respect to p and q.

Then the restriction of h to Rys C RCF is zero if and only if

the following identities are satisfied for the values hyg :

) hac Zca Zba
L(a,b.c).rk(hbc Zch @(c,a;b)) <1

. ). rk(Pad Zad Zcd
R(a,d,c).rk(hac Zac @(a.d;c)> ©

for all a, bec Land all ¢, d ¢« R.
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peook:

One has hila,c;m]) =z h o -z ho o +ola,c;m)h,, . But because
c=hma=0-

For relations [r,s;t] with the property that {r,s,t}c LM or {rs t}c MR

h is assumed to be a left-right homomorphism, we have h,

it is trivially true that h([r,s;t1)=0 for any left-right homomorphism.
The other non-separated triples to consider can be divided into four
classes (we always assume a,b ¢ £ and c,d<R).

I: [a,bic]; h(la,b;c])= zgahpe- zophae + 0

II: [c,a;b]; hilc,a;b])= 0 - zpahp+elc,a;blh,

II:[d,c;al; h(ld.c;aD= z,q hop, - Z;chad + O

IV:[a,d;c]; h(la,d;c])= 0 - z qh,. + ¢lad;clhyy

The first two equations are recognized as two of the minors of the
matrix for L, and the last two as two minors of the matrix for R.

(The third minor is the identity (2.4)3), independeﬁt of h.) s

Coeollaey (3.6) :

A left-right homomorphism h : F — Oy with the property that

h(R,s) = 0, ‘is determined by its value h(lp,ql)=hy.

Conversely, any hpq € OX such that the rational functions haq. hpd

and h, g4 (defined by the equations (A), (B) and (C) below) are actually
in Oy, defines a left-right homomorphism h with h(Rys )=0.

proof: From the above lemma, h(R()=0 is equivalent to the sets of
equations L, R. We now use these to compute the coefficients had
from hpq :

From L(a,p,.q) : haq = hpq.zpa/cp(q.a;p) (A)

From R(p,d,q) : hpd = hpq.zqd/tp(p,d;q) (B)

From Riad,q): hyq= haq.zqd/cp(a.d:q) (C)

From L{ap.d): h,q = hpd.zpa/e(da;p) (D)

So we expressed all coefficients h,4 in terms of hpq .

We note that the above system of equations is overdetermined; for

example, the two expressions for h,4 (C) and (D) have to be equal.
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But this comes down to ¢(q,a;p)e(a,d;q) = ¢(p,d;q)e(d,a;p), which is
the identity V(p,q.,d,a) of (2.4)2). The other compatibilities are checked

in a similar way. ®

Definition (3.7) ¢

Let p « H. We define a function A=\(p) : HxH — Q(Oy) as follows:
* For r,s and p different we put :

Aps = zprzpslcp(s,r;p) == Koy
* For r#p we put:

Apr = Zpr= ~Arp

0

* For all r eH we put: A,

Definition /Lemma (3.8) s

Let p ¢ H. Define coefficients C,.s = C,<(p) as follows:
* For r,s and p different: C ¢ = (p(p,r,s)/¢(s,r;p))

* For r+p: Cpr=o ; Crp=1
* For all r ¢ H.: C,y =0
Then one has: Ars = Cog Zor -Csrzps

If p ¢ C(r,s), then C,g ¢ C{x} and A ¢Oy.

proof: Consider the case that r,s and p are all different. Then, by
(2.4) 4) one has: '
Apk * (ap(p,r;s)/‘p(s,r;p))zpr +((9(p,s;r)/xp(s,r;p))zps ,
and by property (1.12) 1) and 2) of the limit tree we know that
ols,r;p)<olp,s;r); o(s,r;p)<plp,r;s)
if p ¢ €(r,s). So indeed ), is holomorphic if p ¢ Clr,s).

The other cases are trivial. ®

Definition /Proposition (3.9) s

Let T be a limit tree, and p*q ¢ * vertices. Then there exists a
unique left-right homomorphism ¢ = o(p,q) : ? — OX with the
following properties:

1) ollp,qD = Z,
2) o(Rpg) =0

q
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Furthermore, ¢ has the following additional properties:
3) olla,.c]) = Ay¢
4) olla.c;m])= ¢la.c;m)Ay¢

ollm,a;c])= ZopAae = = Plmaazc)h,,

ollem;aD= -z, A= - ¢le,m;a)h, .

(in these formulae: a,b ¢ L(p,q); meM(p.q); c.d « Rip,q))

proof : We apply lemma (3.6) to compute the values of ¢ starting
from o([p,q]):=zpq . We find:

(A) olla,ql) = zpq.zpa/«p(q,a;p)= }‘aq
(B) o([p,d]) = zpq.zqd/«p(p,d;q)= Zpd = )‘pd
(D) o(la,d])= zpd.zpa/@(d,a;ph Xad

By (3.8) these A, 4 are in OX-' because by construction one has
p € €(a,d).This proves the existence of the c. The values on the various

terms are easily checked to be as stated. R

Definition/ Proposition (3.10) :

Let T be a limit tree, and p*q ¢ #{ vertices. Let f ¢ C{x} a function
with ord(f) = s(p,q), where s(p,q) is defined in (3.3). Then there exists
a unique left-right homomorphism t=t(p,q) : F —+OX with the
following properties:
1) «([p,qD) = f
2) W(R,q) =0
The values on the other [r,s] are then given by:
3) t(la,q]) = f.zpa/cp(q,a:p)

t([p,d]) = f.zqd/‘p(p.d;q)

t([a,d]) = f. zpa.zqd/p(q.a;p)@(a,d;q)
(As always, a,be £ and c,de R .)

proof : The values on [a,q] and [p,d] are in Oy, because by definition
of s(p,q) we have ord(f)=s(p,q)2p (q,a;p), o(p,d;q).

Furthermore, we have z =cp(q,a;d)zqa +<p(p,d;a)zqd as in (2.4)3)

pa %qd
By property (1.12)1) of the limit tree we have:
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olqg,a;d)2pla,d;q) ; o(p,d;a)zp(d,a;p)
By property (1.12)2) of the limit tree we have:
old,a;p) = olq,a;p)
Hence ord(f.¢(q,a;d)/¢(q,a;p)ela,d;q)) 20
ord( f.@(p,d;&)/@(q.a;p)«p(a,d;q))zo
This proves that t([a,d]) ¢ Ox ®

We will now construct out of these ¢ and t homomorphisms our

generators for T] and T2,

Deginition/ Propostion (3.11):

*For each edge {p,q} ¢ e(T) we have 3 homomorphisms:

olp,q) , tp.g)=tlq,p) , olq,p) ¢ Hom(I,Ox)=NX
So in total we have defined 3(m-1) normal module elements.
*For each ordered pair (p,q) such that {p,q} not in e(T) we have a
homomorphism Q(p,q) = o(p,q)/xm(p’q) ¢« Hom(R/R,), Ox)=AX

So in total we have (m-1)(m-2) such homomorphisms.

proof : The first thing to see is that when {p,q} ¢e(T), then the set
M(p,q) is empty ; there are no separated relations and so Rns =R
Hence in these cases o(p,q) and t(p,q) vanish on all relations, so are
in fact in Hom(l.ox ). From the values of T one sees immediately that
(p.q)=1(q,p).

Now if {p,q} is not an edge of T, then the values of ¢=6(p,q) on the

separated relations are given in (3.9):

olla,c;ml) = ela,c;m).h g,

ollm,a;c]) = -p(m,a;c). Ay
ollec,m;al) = -o(c,m;a) A,
where Arg is as in (3.7). Now p ¢ €(a,c) and p ¢ €(m,a), s0 A,
and A\, are actually in OX’ by (3.8).
By property (1.12)1) and 2) of the limit tree: p(a,c;m)=p(p,q;m)2m(p,q)
By property (1.12)1) and 2) of the limit tree: p(m,a;c)zp(a,c;m)2mip,q)

Because [a,c;m]l+[m,a;cl+lc,m;al = 0, it follows that the values of the
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restriction of o(p,q) to the relations R C F are all divisible by xm(p.q),
As these o(p,q) obviously vanish on RO’ we get by division elements
Qlp,q) cAx. ' b6

These constructed elements of NX and Ax give rise, by taking classes,
to elements of 'I'IX and T)‘% respectively. In order to keép notation as
simple as possible, we will not make notational distinction between
these elements in the Hom or in the T, but we will say where the

element is to be considered if any ambiguity arises.

We will now show that our homomorphisms project to generators
for Tlx and T%( . The idea is to use the slicing sequence for our map
x:X — T, representing X as the total space of a flat deformation
of Y.
Proposition (3.12): (see also [B-C1)
Consider the exact sequence
1 - - . | 2 > R, B, 2
1) By [G-L1,2.2 and [Gr] one has dim(Im(«))=dim(smoothing component
on which the smoothing of Y occurs ) = 2m-3.
2) The normal module NY is generated by homomorphisms
Npq i ¥pYq f-—byp.rest —0
. I
One has: mY.T Y =0. 1
From this it follows that: u(Ty,r)=dim{Im(a))=2m-3.

3) The module Ay is generated by the homomorphisms
apqr: [p.q;rl r--byp; [r,p;ql —0; [q,r;pl — Yp

One has: my.T2Y=O.
"It follows that u(sz/T)=dim(Im(B))=dim(T1Y)-dim(Im(oc))
=m(m-2)-(2m-3)=(m-1)(m-3).
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1 _
4) One has: Ty ;1 = Coker(® ®0x —Ny)

Tly = Coker(6 ® Oy —+Ny)

1
so NX -—HTX/T

2 ~ 2
T/ — T

1
—HTX

(We use u(M) to denote the number of generators of a module over

a local ring.)

Corollary (3.13) :

1) u(Ny)<3m-3

2) u(Ax)<3/2)(m-1)(m-2)

3 w(T')=2m-3 or 2m-4.

prook: As the module ©,e] of relative vectorfields has m generators
and TIX JT has 2m-3 generators by (3.12), itfollows that Ny has at
most 3m-3 generators. Similarly, as the number of generators of
Hom(F, Qyx ) is clearly m(m-1)/2, and the number of generators of
sz is (m-1)(m-3) by (3.12), it follows that AX has at most (m-1)(m-3)
+ m(m-1)/2=(372)(m-1)(m-2) generators. Finally, T1X is the quotient
of TlX /T by the module generated by the image of the vectorfield 0.
If o map to a generator of TX}T ; T;( is generated by 2m-4 elements,

otherwise the number of generators is 2m-3. &

We shall see below that the inequalities in 1) and 2) are in fact
equalities. Also, we will give a simple criterion to decide between the

two alternatives of 3).

Proposition (3.14) :

Consider a rational surface singularity X with reduced fundamental
cycle, and with equations as in (2.2). Let T be a limit tree for X, and
let o(p,q), t(p.q) , Q(p,q) the homomorphisms as defined in (3.11). Then

one has:
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1) the 3(m-1) homomorphisms
o(p,q), t(p,q)=1(q,p), olq,p) , {p.qtce(T)
form a minimal set of generators for NX‘
2) the 3(m-1)(m-2)/2 homomorphisms
Q(p,q), [p,ql¥=[q,plY,.0(q.p) , {p.q} not an edge of T
form a minimal set of generators for Ax.

Consequently, the ¢'s and 1 's generate T1x and the Q's generate T>2(.

proof: Let R be the composition Ny = Ny /my Ny — Ny /my, Ny,

Consider the C-vectorspace
N = e{p,q}ee(T) (C.olp,q)BC.t(p,q)PC.0(q,p)) C NX

As dimg(A) = 3m-3, and the number of generators of Ny is by (3.13)

at most 3m-3, it suffices to show that the restriction of R to A is

injective. Let "'-'Z A pq o(p,q)+B Pq w(p,q)+A qu(q,p) ¢/V and assume

that R(n)=0. Let {a,b}ce(T). Using (3.9) and (3.10) we see that only

three terms contribute to n(la,bl):
n(la,bD=A,, 2,4 +Bap fab T ApaZp,

where f ) ¢ C{x}, ord(f,)=s(a,b)21, see (3.2).

So we get:

R(n)([a,b])= Aab.yb+Aba.ya.

From (3.12) 3) it follows that h([a,b]) emy For any hemy Ny . So Ap
=Ap, =0. To handle the coefficients B,;,, we choose for all {a,b}ee(T)
a ¢ ¢ H such that s(a,b)=p(a,c;b) or s(a,b)=p(b,c;a). Without loss of
generality we can assume s(a,b)=p(a,c;b), and {b,c}ce(T). Again, by
the formulas of (3.10), we have:
n(la,c])=B,pt(a,b)([a,cl) +By t(b,c)([a,c])
=Bap- fab: 2/ 9(a,c;b) + B fpe -Zpg /9(c,a;b)

Hence, putting x=0:

R(n)([a,c]) =B,y .(f,p/(a.cib)(0).y; +Bps.(fpc/9lc,aib) )0).y,

Now the coefficient (fab/cp(a,c;b)(O)#O, by the choice of c¢. As before,
we conclude that B,y =0. So from R(n)=0 it follows that n=0 and hence
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the first part of the theorem is established.

The proof of the second part follows the same kind of pattern:
Let § be the composition Ay = Ax/myAy —)AyleAY.

Consider the C-vectorspace

A= B p.qinot c e(T) (€-2P.AIOC.Ip,q1"BC.Q(q,p))

As dimg(A)=3 (m-1)(m-2)/2 and the number of generators of Ay is
by (3.13} at most this number, it suffices to show that the restriction
of § to A is injective. Let a=Z qu Q(p,q)+qu [p,q]V+qu Q(q,p) and
assume that S(a)= 0. Fix r,scH. We will show that A, =B ¢ =A =0
from the induction hypothesis A,=B,p, =Ap,=0 for all a,b ¢Cilr,s),
{a,b} not equal to {r,s}. Choose an m ¢« C(r,s) such that p(r,s;m)=m(r,s).
From the induction hypothesis and (3.9), (3.11) it follows that only
three terms contribute to a(lr,s;m]l):

allr,s;mN=A_ Qr s)([r,s;mD+B, [r,s17([r,simD+A . Q(s,r) ([r,s;m])

m(r,s) m(r,s)
Ly Zgr

=A s elr,s;m)/x s T Bpgelr,sim) +Ag o(r,s;m)/x

Hence, S(a)([r,s;mD)=(A, g yc+Ag, ¥p).u, where u=(«p(r,s;m)/xm(r’5))(0)
is non-zero by the choice of m. From (3.13)4) it follows that

h(lr,sim1)e m for all h ¢ my Ay. So Ap=Ag=0. As S(Ir,s1¥) is equal
to (the class mod my ) of the homomorphism [r,s1”¢Ay, and this is
part of the minimal generating set of Ay, we also find that B, =0.
So S(a)=0 it follows that a=0 and so the second part of the theorem

is proven. bz

So we have concrete sets of elements minimally generating Ny and
Ax- By.(3.12), certain relations between generators arise, when projected
to T resp Tz. It is of interest to make these relations explicit (see
(3.20)) , but we can find dimension formulae without knowing these
relations. The following proposition seems to be an essential property

of the deformation constructed in (2.13),
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Proposition (3.15)

Consider the one-parameter Xg —*S of X as in (2.13) and the

associated long exact sequence:

1 X. ol & ed 2 Xe .l B . w2
.o =T XS/S_'TXS/S—'TX _’TXS/s'—"TXS/S_’TX . T

Then o and B are surjective.

proof : We only have to lift generators of Tlx and T%( to the relative

situation. By proposition (3.14) the homomorphisms defined in (3.10)
and (3.11) are such generaters, defined universally in terms of the
¢(p,q;r) and the limit tree T. The deformation Xg —S is described
as in (2.13) by replacing ¢(p,q;r) by ((x—s)/x )ap(p,q ;r). Making the same
replacement of ¢'s in the definition (3.10) ( together with the
replacements f —o((x—s)/x)f) and in (3.11) (together with xm(p.q) —
((X—S)/ X)xm(p,q)) we first notice that all divisions occuring are in fact
possible. The fact that these lifted homomorphisms in fact live in

Nxg and Axg is formally the same as for the special fibre X. &

Part A. of the following theorem is a generalization of a result of
Behnke and Knorrer [B-K1. Special cases were also conjectured by
Wahl [Wa2l,6.7. Part B. generalizes a theorem of Behnke and
Christophersen [B-C1, 5.11.

Theotem (3.16)

Let X be a rational surface singularity with reduced fundamental cycle.
Let m:X — X be the minimal resolution of X. Then:

A dim(T‘x)=V (m(v)-3) + dim(H!

Ziy¢BT(4) X.og)

g5 ; y
B. dim(TS)=2, pra) @¥-1) m(v)-3)

Here BT(4) is the set of vertices of the blow-up tree BT of X with

multiplicity >4.
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prook :

We consider the deformation of (2.13).

The proof of B. is very simple: by surjectivity of « and B from (3.15)
we have that TZXS/S is flat and compatible with specialisation. Hence:

im(T2 )= dim(T2, )=S'P 2 2
dim(TS)=dim(T4 )= F; dim(T%,) +dim(T2¢ )

where X; , Xp,..., X, are the singularities of the first blow-up, and
Cyn is the cone over the rational normal curve of degree m. As

dim(TZC r)n= (m-1)(m-3) (see [Arnl, [B-C1),the result follows by induction.

We now turn to the proof of part A. For a rational singulartiy,
denote by cod(X) the codimension of the Artin component in TIX g
As H! ()_(.@)?) describes the deformations of X, which map down to

the Artin component, A. is equivalent to the statement

cod(X) = D L. pT(a)mv)-3).
As cod(C,)) = m-3, (see [Pi], Sect.5), we have to show that

cod(X) = > P cod(X}) +cod(Cpy)
The map « of (3.15) surjective, so by [G-L], 2.2, dim (TlX ) = dim(Im(w))
is the dimension of the Zariski-tangent space at a general point of
j(S), where j:S — the base space of a semi-universal deformation of
X inducing the one parameter deformation Xg —S. As j(S) lies on
the Artin component, which is well known to be smooth, it follows
by an easy application of openness of versality that the codimensions

are additive. =

The deformations of X can be divided into those for which all the E;
can be lifted and those that change the resolution graph topologically.

To be more precise, there is an exact sequence:

0 —+®>—((logZ} O + & OEi(Ei) —0

From this one obtains after taking cohomology the dimension formula:
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dim(Hl()T,G)—{hZ(-EiZ -1) + es(X), where

es(X):=dim( ES)

ES := H(X, 0% (log2)
Here ES is the tangent space of the functor of equisingular deformations
in the sense of Wahl (see [Wa3l). A fundamental theorem of J. Wahl
states that the natural map ES —lex is injective( [Wadl, thm.4.6).

Definition(3.17) s

We put T)t(OP = T)]</ ES , where we identified ES with its image in T)i(.
We will refer to T;&oP as the topological deformations.

The number es(X) =dim(ES) could be called the modality of X.

The modality es(X) is a rather subtle invariant and is in general not
determined by the (analytic type of the) resolution graph. Taut singu-

larities have es(X)= 0, and there are lists of those ([Lauf]).

Example (3.18) :

We take again our example (1.7). In (1.11) the blow-up tree is given.
We find:

dim(Tlx)= 2+1+1+24= 28

dm(TS )= 8+3+3=14
(According to [Laufl, X is taut, so es(X)=0.)

3.8 Relatlons betiween genervators

By (3.16) the dimensions of T )t(OP and T)% are discrete invariants of
X, that can be determined from the resolution graph. On the other
hand, (3.14) gives us generators for T)t(OP and T)z( as Ox-modules, and
hence as C{x} modules, because myTiY =0 fori=1,2, see (3.12). So one
expects to be able to give concrete C-vector space bases for these
spaces. To do this, one needs to understand the relations between the
generators, and for this it is convenient to have simple recognition

criteria for elements of Nx and Ax:
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Definition (3.19) s

Let M be an Ox-module. A subset SCM is called determining if if for
any homomorphism «:M —Oy we have

Mg =0 a=0
(or what is the same, Hom(M/<S>,Ox)=O). In other words, any homo-

morphism is determined by its values on S.

Lemma (3.20) :

A. The set S = { Q(p,q)l{p,q} ¢e(T)} is determining for /12,

B. Let S C R be a set such that for all p,qe¢v(T) there is an r(p.q)
on the chain from p to q in the limit tree (not equal to p and q) such
that [p.q;rl, [r,p:ql and [q,r;pl] are in S. Then the classes of the
elements of S is determining for R/Ry.

proof: Statement A. follows from (3.6) and (3.14) 1). (Although an
easier proof is possible.) For B. we consider the relation between the
relations (checked by a calculation):
zpq[r,s; pl + zpr[s,q;p] *tZpg [q,r;pl

*1/3( ¢ (s.a:p) - ¢lr,s:p) [r.q;s]

+1/3(¢lq.r;p) - ¢(s,q;p)) [s,r;ql

+1/3(p(r,s;p) - 9l(q,r;p)) [q,s;r] =0
Let o ¢ AX' We will first show that « take zero values on relations
[s.q;p] for which p,q and s lie on a chain in the limit tree. If s lies
on the chain from p to q then take r=r(p,q). If s=r then « takes zero
values on [s,q;p] by assumption. Otherwise we may assume by induction
(on the distance between vertices in the limit tree) that « takes zero
values on on all relations occuring in the above relation between the
relations except for[s,q;pl] and [q,r;pl. However o(lq,r;pl) = 0 by
assumption and it therefore follows that:

zpra([s,q;p] )=0

But as OX has no zero-divisors it follows that «(s,q;pl) = 0.

The proof for the case that s is in £(p,q)\J R(p.q) is similar.
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For p,q and s not on take r to be the centre of p,q and s in the limit
tree, and use the fact that we just proved that o takes zero values

on all relations in which r occurs. =

Although the Q(p,q) are generators for T>2( , it turns out to be
convenient to work with certain other elements K(p,q)¢Ay . These
K(p,q) will be used in §4. To define these, we need an additional

D)
structure, that is also convenient for picking a C-basis for Tx.

Definition(3.21) :

* The distance function d #HxH — N is defined by the length of
the chain from p to q in the limit tree. Thus:
0) dp.p) =0
1) dlp,g) =1 {p,q} ¢ e(T)

* A function min:H xH\ {(p,q)ld(p,q)<1} —H is called a (coherent)
minimum function if it has the following properties:

0) min(p.q)=min(q,p)

1) min(p,q) « C(p,q)\{p.q}

2) o(p,q; min(p,q)) = m(p,q), where m is as in (3.2)

3) If €C(a,c)cC(p,q) then min(a,c)=min(p,q).

Using (1.12) one sees that such coherent minimum functions do exist.

* A function max : e(T) ——v(T)=H is called a maximum function
if it has the following property:
If r=max({p,q}) then either {r,p}ee(T) and p(r,q;p) = s(p,q)
or {r,q}ce(T) and o(r,p;q) = s(p.q)
Here s(p,q) is as in (3.2). Using (2.12) 2) such maximum functions

do exist.
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Proposition(3.22) s

Let min:*HxH —<H be a coherent minimum function. Put
R(min):={[p,q;min(p,q)], & cyclic, d(p,q)22}
Then for all p, q with d(p,q)22 there exist unique elements
K(p,q)eAx
with the property that: ( with m:=min(p.,q))

K(p,q){ [p,q;m] )=—zmq
[q,m;pl = Zpq
[m,p;q] =¢(m,p;q)
r = 0, for all other r ¢ R(min).

These K{(p,q) generate T)z( :

prook: Assume for the moment that such a set of generators exists.
Then it should be possible to express our Q(p,q) ¢ Ay in terms of these
K(r,s) and [r,s1”. We try the following Ansatz:

®) 0P =D f0m.sRipq | ArsK(rs)*Brglris]” +Ag K(s,r)

By (3.20)B. we can check such a formula by evaluations on [r,s;m],
[s,m;r] and [m,r;s], where m=min(r,s). We summarize in a table the

values of Q(p,q), K(r,s), [r,s1V,K(s,r) on these relations:

TABLE
Q(p.,q) K(r,s) [r,s1Y K(s,r)
[r,s;m] C U ) Ag ~ Bain ¢(r,s;m) -
[s,m;rl (V ) hem . “Z gy ¢(s,m;r)
[m,r;s] ({ W)kpe ¢(m,r;s) S - -

Here U =(np(r,s;m)/xm(p'q)); V=-(g(s,m;r)/xMP.a)), w =- («p(m,r;s)/xm(p'q)).
Hence, looking at [r,s;m] and comparing coefficients we get:

U KXoy & ~RogZins * Beg(Esim) + Ay 2.,
Writing A ¢ = Cpq Zpr o Zps as in (3.8) and using the linear equations

the left hand side can be rewritten as:

u.(Crs Zowy = Sogp Bms Pl olpm;r)-Cg, @(p,m;s))
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Now we compare coefficients and get

I’I'C'rs =Asr

uC,, =8
U.(Crsn_g(p,m;r)—Csrup(p,m;s)) =o(r,s;m)B ¢

We claim that indeed the left hand side of this last equation is

divisible by ¢(r,s;m). To see this, assume for simplicity that r and s

are different from p. Then one has, by (3.8) and (2.4)2):

Crsnp(p,m;r)-Csrsp(p.m;s)=(sp(p,r;s)«p(p,m;r)+xp(p,s;r)\p(p,m;s),)/xp(s,r;p)
=(-cp(p,m;s)up(m.s: r) +¢o(p,s;r)q>(p,m;s))/@(s,r;p)
=(sp(p,m;s)ap(p.m;r))/qa(s,r;p)

Now ols,r;p)=p(m,r;p) <p(p,m;r) and

o(r,s;m)=p(p,s;m)<p(p,m;s)

by the defining properties of the limit tree T (2.12).

Hence, one can divide by ¢(r,s;m) to define B,.

A tedious, but rather straight forward calculation show that with

these choices for A B,s and Ag, the evaluations of (¥) on the

rs’
relations [s,m;r] and [m,r;s] also hold. (A little miracle).

Given these facts, we can now reverse the argument to show that
there exists such homomorphisms K(p,q): by descending induction
on the distance d(p,q) between p and q in the limit tree:

Kip,q) = U L.(Qp,q) -

(Zrel(p,q),sek(p,q), (r,s)ﬂp,q)(ArsK(r’S)+Brs [r.s]"+Aer(s,r))))
This works, because Cpq=1 and U is a unit by construction. B

Proposition (3.23) s

1) The vector field 3(P)==qu+t~{p} 9/9zqp, is in O , and its image
in NX is:

ZQ=(P.q}e e(T) °(Pa)

2) Write (p(p,q;r)=ap,,-aqr for some apreC{x}. The vector field

3:=a/6x+zr,se+t axarsf)zrs is in OL.
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The image of $in Ny is:
Z{p,q}ee(T) ax(qu)/qu -©(p,q) +dyapq0(p.q)

3) the image of [p,q1” , {p,q}ce(T) in Ay is

tp.ql”= Zs:min(p,s)=qK(p'S) N Zr:min(q,r)=pK(q'r)

. prook:

The vector field 3(p) is tangent to the linear subspace £, because

it gives zero on all linear equations L(r,s,t).

On the quadratic equations Q(r,s) with {r,s} an edge of T we only have

non-zero values if {p,q}={r,s}. The element

3(p) = Zq:{p,q}ee(T) olp,q)
has the same values by (3.9). Because the Q(r,s) with {r,s}ce(T) form
a determining set, the formula 1) follows. The proof of 2) is similar
and is left to the reader. The proof of 3) is easy because the values
of the left hand side and the right hand side on relaties of R(min)
are equal, as one immediately checks. Hence 3) follows because R(min)

is a determining set of relations. ®

Corollary (3.24):
The number of generators of T)]( is 2m-4 when on the first blow-up
there is no singularity of multiplicity m. Otherwise the number of

generators is 2m-3.

proof : By (3.12)2) we have that the number of generators of T)I(/T
is 2m-3. We have 3m-3 generators ¢ and t for Ny. By (3.21)1) we have
m relations between the ¢'s in T;(/T , coming from the vectorfields
$(p), peH. It can be seen that the § from (3.21)2) maps to a generator
of T>1(/T exactly if there exist p,q,r with o(p,q;r)=1. But this means
precisely that X has no point of multiplicity m. b
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Proposition (3.25):

1) xl(p’q)o(p,q)e ES
2) xlPQ)-sp.a*l o 0y Es
3) xMPAg(pqr=0 in TS

Here 1, s and m are as in (3.2).

proof : Consider {p,q}ce(T), and let o= o(p,q) <Ny . This normal module

element corresponds to a deformation of X over Cle1/(e2) described

by the following perturbation of the Canonical Equations:
Q(r,s)+e.ollr,s1) =0 , r,setl.

By the definition of the o's (3.9) we get, with ac£=4(p,q), ccR=Rip.q):
Qla,c)+e. X =0

Q(r,s)+¢.0 =0 if r.sel or rseR
Using (2.4), we can rewrite this as:
(ch(ch+ €) - Scp=0

(zycte Cuo Nzgate Cpg )-Sac +26.5,c7/9(c,a;p) =0 for a+p
where the C__ are as in (3.8).
Let @ be the coordinate change given by:

ac €Cac
— Z,E Cca

z froiep- 7

ac

Zca

e A

z if r,sel or riseR

rs rs

Then one has:
®*(Q(p,c)+e.of [p,c1)) = Qlp,c)
@*(Q(a,c) +e.0( [a,c1)) =Qla,c)+2.6.5,./¢(ca;p)
@‘(Q(r,s)+s.o( [r,s1)) =Q(r,s)
We recognize this as the Canonical Equations belonging to
Pla,c;p)=pla,cip) - ¢
etc.
Note in particular that in this canonical form the equations Q(p,s) are
unchanged for all s ¢ -{p}.
Now the normal module element xl(p Q) ¢ corresponds after a similar

coordinate change to the Canonical Equations belonging to the solution
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dla,c;p) = ¢la,c;p) -s.xl(p’q)
O(r,s;p) = olr,s;p) rselorrs R
etc.
Because by definition p(a,c;p)<l(p,q), it follows from (2.9) that there is
a one parameter deformation having xIP.@)g as first order term,
~ and with
¥(a,c;p) = ¢la,c;p) - txl(p’q)
¥(r,s;p) = o(rs;p) rselorrseR

Tpr = Spr reH -{p}

Here t is the deformation parameter. Because p(a,c;p) and l(p,r) are
constant under this deformation by (2.7) and the definition of 1(p.q)
it follows from (1.8) that the dual graph of the resolution of a general
fibre of the one parameter deformation is X is the same as the dual
resolution graph of X In particular, x!P @5 is an infinitesimal
equisingular deformation, hence in ES.

The proof of the second statement is similar and left to the reader.
To prove the third statement we note that from (3.22) it follows that
K(p,q) is a linear combination of the Q(r,s) for which C(r,s)> Cl(p,q)
and min(r,s)=mini(p,q). In particular m(r,s)=m(p,q) for such r and s and
thus m(p,q)K(p,q)=0 follows from xm(p’q)Q(p,q)=0, which follows
from the definition of Q(p,q). ®

We now attach to a rational singularity with reduced fundamental

cycle C{x}-modules that turn out to be isomorphic (as C{x}-modules)
2

to T)%OP and Tx:

Definition(3.26):

Let X be a rational surface singularity with reduced fundamental cycle.

A. Let 'l‘>t(°p be the C{x}-module generated by symbols:
O (p,q@), O(q,p), and T(p,q)=T(q,p)
for p,q ¢H with {p,q} an edge of the limit tree, subject to the relations:
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ZCHP,q}ee(T) Glpgq) =0

xl(p'q)c(p,q) =0
xl(p,q) -s(p.g)+l ¢ (p.a) =0

T -
ZAp,qtee(T) I%(Spq)/fpq- T (P.a) +95a5,C (p,g)=0

B. Let 'l‘)z( be the C{x} module generated by the symbols:

K(p.q)
for p.qe with {p,q} not an edge of T, subject to the relations:

ZSSmin(PvS):qK(p'S) ¥ Zr:min(q,r)=pK(q’r) =¥

xMPDK(p.q) =0

Theorem(3.27):

There are isomorphisms of C{x}-modules:

A. TP — TOP
B. | % — 1%

proof: This is essentially a counting argument. We will first prove
statement B. By (3.23)3) and (3.25)3) there exists a well defined
surjection of C{x}-modules:

% — T4
given by sending K(p,q) to K(p,q). To show that this map is an
isomorphism we only have to show that the dimensions as C-vector-

spaces are equal. So we will show that:
dim(T%) = D b1y (M- m)-3)

By definition 'I‘)Z( only depends on the limit tree T, and the chosen
coherent minimum function min. We change notation and put
T2(1):= T%.

Let T be the first blow-up of T in the sense of (1.17).
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We will choose a coherent minimum function for T in the
following compatitble way:
if p,q are vertices of a connected component of 'f , then
min (p,q) = the unique vertex r on the chain from p to q in 'f with

b(r) = min (b(p),b(q))
Otherwise it is not defined. Remark that by construction of T it follows
that min(p,q) is not defined exactly when m(b(p),b(q)) =1 or {p,q}e e(f).
We put T 2('/l'\) =T 2(f k) Where f =11 fk , the decomposition
into connected components.

We will show that there is an natural isomorphism of C{x}-modules:
o« 2T - xT2(T)
It is defined on generators as:
o(K(p,q)) = x. K(b(p),blq))
Because clearly dim('l‘Z(T)/x.'l‘z(T))=(m-1)(m—3), the dimension formuja
then follows by induction.
To show that the map « is well -defined, we have to show that the

defining relations are mapped to zero:
a(xMPD K (p qN=xMP-D K1 (p) big)

By (1.17) we know that m(p,q)= m(b(p),bi(g))-1, so by definition the right

hand side is indeed zero. As for the first relation:

0‘{ zs’mi“(p»S)"'qK(p'S) ’ Zr:min(q,r)=pK(q’r)}=

A
By definition of the minimum function on T we may rewrite the index

sets in the second expression. For the first term we get:

{s: min{b(p),s)=blq) such that m(b(p),s) > 1}
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and similar for the second term. Because for all s<9 with m(b(p),s)=1
we have that x.K(b(p),s)=0 in ’l‘z(T) we may as well take the index
set to be {s:min(b(p),s)=b(q)} and similar for the second term. Hence it

follows that the map « is well defined.

To show that o is an isomorphism we exhibit an inverse of «:
B: XTAT) — T2 (T)

We define B on generators x.K(r,s) as follows:

If m(r,s)=1, then x.K(r,s)=0, so we need not consider this. If m(r,s) 1,
there exist unique p and q in a connected component of T such that
r=b(p), s=b(q) and we put B(x.KK(r,s)) = K(p,q). It is proved in a similar
way that 3 is well defined hombmorphism of C{x}-modules, and clearly

it is inverse to o. This completes the proof of B.

We now we turn to the proof of A. Again, by (3.23)and (3.25 ) there

is a surjection of C{x}-modules:

top

Tx — T>t<°p

by sending generators to generators with similar names. We show that
they have the same dimension as C-vector spaces, and hence are

isomorphic.

The C{x}-module T;:(OD is of the form (S ®@T)/(r), where r is the relation

Z(p,q)ee(T) Ox(8pq)/fpq- T (@) +oxap,O(p.q)=0

Here S is the module generated by the O(p,q) and T is generated by
the T(p,q), subjected to the obvious relations. Note that the
C{x}-modules § and T do only depend on the limit tree T, and
therefore we can write S=8(T), T=T(T). As in the proof of B. one

shows that there is a isomorphism

S(T) = x.S(T)
Because dim(S(T)/x.8S(T))= m-2, it follows that

dimS(T) = D' oo mw)-2)
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For the T we have to use a different argument:

We claim that dimT(T) = D (-Ef -1) =Y\ prgyl  +1

(Here BT(3) is the the set of v ¢ BT with m(v)23.)

This is equivalent to the statement that:

5 _ - : _ .
(%) Zip qhee(T) {(p,q)-s(p,q) = #vertices of T -svertices of BT(3)

because z{p.q}ee(T) 1=m-1= Z(-Eiz ~2)+ 1.

Formula (*) is obviously true for an Ay singularity. (Here we formally
put s(p,@=0.)
To prove formula () it suffices to show that it is "stable" under blow-up.
So, consider I' as in (1.10) , the resolution graph of the first blow up.
We have that svertices of I' - = vertices of r = #{E;: Z.E; <0}
Moreover the number of vertices of BT(3) reduces by one.
So the right hand side of (¥) changes by ={E; : Z.E; < 0}-1 which is
equal to:

D ZE; - Zi:Z.Ei<O(-Z'Ei-1) 1 =m - an.ﬁi<o(_z‘Ei"”

Now by (1.17) edges {r,t} of T correspond to edges {p,q}of T
(p=b(r), q=b(t)) with {(p,q)23. Furthermore:

lr)=lpg-2;  slkrt)=slpq -1
Thus one has:
? A t)- _ T‘ B -
Ligps oty HFA) SN - ), l(p.9)-s(p.q)

{p,q}ce(T)

m-1 - ={{p.q}ce(T): Lip,q)=1}
So (#) is equivalent to:

={{p,qtce(T): Up,gq)=1}= ~Z.Ei-1}

<
L‘i:Z.Ei<O
which is an easy to prove property of limit trees. (In case that the

tree comes from an limit equivalence relation, this follows immediately

from the definition (1.13).) This concludes the proof of the above claim.
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By adding it follows from (3.16)
dim (ST @T (D) = dimTy°P +1.
Because r+0 in S(T)® T(T) it follows that:
dmSMOT(T)/ (1) < dim Ti P
On the other hand we already had the surjection:
| SN STM/ () — Ty ¥
Statement A. follows from these two facts. Remark that it also follows
that r is a sockel element S(T)®T(T), which can also be seen directly

from the definition of r. b2

Remaek( 3.?8):

From (3.27) one can write down C-basis for T>t(°p and T2 , but this

involves further choices. For T>2( this can be done using a maximum

function as in (3.21). The following elements form a C-basis for T>2(:
Kp,q) , xK(p,q), . .., x0PA-1 gpq)

where p,q are such that d(p,q)23, or d(p,q)=2 and q+*max(p,min(p,q)).

This basis will be used in §4 to express the obstruction map.

Furthermore we remark that we do not know exactly the OX - module
structure of T)I( and T)z( although it should be possible to calculate
this. In [B-C1 it is claimed that there exist generators X,zy,...,Zym of
the maximal ideal of Oy such that sz%( =0 for all k. However, their
proof is wrong and in fact one can construct rational singularities

with reduced fundamental cycle for which this is not true.
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S4.  An Algosishm fov Computing a Dossal Dofoemation.

In this section we will describe an algorithm for computing a versal
deformation of a rational surface singularity with reduced fundamental
cycle. This is done by constructing an explicit flat family and using
a criterion of versality of such a family. The same criterion was used
by Arndt [Arnl. In order to formulate this criterion we recall some
basic facts from obstruction theory (see alsofor example [Laud]).

Suppose that we have an embedded family Xg over S:

xg s cNxcM

|

§ &y oM
Let A be the local coordinate ring OCM,O' and let S be defined by
an ideal } CU. Let the ideal of X ccN be generated by fl,...,fp,
and let the ideal of Xg be generated by fiS*"'-fpS'
The flatness of Xg over S is expressed by the following:

Flatness in terms of relations:

The family Xg — S is flat
=
All r=(r1,r2,...,rp) with  2r;f; =0 can be lifted to
I'S:(l'ls,l’zs,...,rps) with Zr’isfis =0 in OS®OCN
Suppose that Xg —S is a flat family, and that we have chosen for
all relations r such lifts rg, and consider a small surjection of OS'
This means that we an exact sequence of the form:

0 —V — 0Oy =03 —0
where V = (Q/Q1 ), O = W/(Q)1 and )7 c{} an ideal such that
m. V=0, m=maximal ideal of /. Hence V is a C-vector space.

Associated to these data there is an obstruction element

obeT)2(®CV
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defined as follows:
1) Take arbitrary lifts flT’fZT""’pr of the f1s.f25,...,fps.
2) For every relation r =(r1,r2,....rp) take an arbitrary lift
LA BOY S pT) of rg
3) Given all these choices, we put A(r)=Xrj1.fi1 cOcN®V
4) \ can be considered as a well-defined element of
Ax®cV = Hom(R/R,Ox)®@ V
5) By variing the choices made in step 1) and step 2) the class
of X\ in T>2( ® ¢V is well-defined. This class we denote

by ob and call it the obstruction element of the family Xg — S.

The interpretation of the element ob is the following: The flat family

Xg —*S can be extended to a flat family Xp — T exactly when

the obstruction element is zero.

Now choose QT = mQ. The obstruction element for the corresponding

small surjection gives by transposition rise to the obstruction map:
ob*: (/m.P* — T .

(Here * means C-dual space.)

The above mentioned versality criterion now is the following:

Lemma (4.1) s

A flat family Xg — § is versal if and only if the following two

conditions are satisfied:

1) The Kodaira Spencer map
(mslmg)* —— T)](

is surjective.

2) The Obstruction map
2

Qrmp* — T
is injective.

(We do not recall here the definition of the "well-known" Kodaira-

Spencer map.)



For the (easy) proof we refer to [Arnl. We remark that one gets a
semi-universal deformation if the Kodaira-Spencer map is an isomor-
phism.

Condition 2) can be interpreted as saying that the dimension of the
image of the obstruction map is equal to the minimal number of
equations to describe the base space of a semi-universal deformation.
In general, the obstruction map is not surjective. In our case we have,

however:

“Theotem (4.2) :
Let X be a rational surface singularity with reduced fundamental
cycle, and B be the base space of a semi-universal deformation of X,
defined by an ideal Q Then the obstruction map

ob*:(Q/mP* — T

is an isomorphism.

proof :

First we remark that the theorem holds for X = C,,, where C,, is the
cone over the rational normal curve of degree m. See e.g. [Arnl. Take
a small representative of B (again denoted by B). It suffices to show
that there exists a points y ¢B, arbitrary close to 0, with the property
that the minimal number of equations to describe the germ (B.y) is
equal to dim(Tfn( ). We consider a one-paramter deformation
Xt —T as in (2.14). It has on a general fibre singularities C,(y).
for all v ¢ BT. By versality there exists a map j : T — B inducing
this deformation. Let y be a generic point of the image j(T). By
openness of versality, (B,y) ~ X veBT (B(m(v)) x smooth space,
where B(m) is the base space of a semi-universal deformation of C,,.
As the minimal number of equations to describe a space is additive
under taking cartesian products, the theorem follows from (3.16), once

we know the truth of the theorem for C,,. =
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We now turn to the our construction of a (semi-uni)versal deformation
for any rational surface singularity with reduced fundamental cycle.
First we will describe this in the analytic case, and later we will

indicate how to obtain an algebraic representative of our family.

From now on we fix a rational singularity X, described by the Canonical
Equations (2.2) associated to a holomorphic solution to the Rim
Equations Spq ,¢(p,q;r) € C{x}. Furthermore, we fix a limit tree T for
X (see (1.12)), with coherent minimum function min and maximum
function max as defined in (3.21). Before describing our construction,

we need some definitions.

Definition (4.3):

For all pairs p, q with {p,q} ¢ e(T) we choose polynomials

- 2 k
Spq .—Spqo + qu1X+ Spq2X2+.. o Squx Fgugw

D m
tpq : tpqO * tpqlx + tpqzx R tpqu Fiagn

(with t, ), where the coefficients are indeterminates or zero,

q ~tqp
such that the correqunding monomials

i i k
U(p.q}ee(T){ x olp,q) , ¥t(p,q),x o(q,p)lqui,tqu,sqpkxm

form a basis of T>1<.
As T;( is generated over C{x} by the ¢'s and t's, such a basis does exist.

We let U = C{sp pk} be the power series ring on these

ai 'tpaj 'Sq
(non-vanishing) indeterminates. Similarly, we have U{x}, and we

consider the Spq and toq as elements of U{x}.

Definition (4.4)

Let T be a limit tree, and let max:e(T) — v(T)=#H be a maximum
function as defined in (3.21). Associated to such a maximum function,
we define the set P cHxH of fundamental pairs as follows:
(pale P
&

d(p,q)=1, or p = max(m,q) for some m «H.
(Note that in the second case {p,m} and {m,q}ce(T), so d(p,q)=2)
Remark also that if d(p,q) =2 and (p,q) is a fundamental pair then q=
max({p, min(p,q)}).
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Definition (4#.5) s

We choose some splitting of the ¢-cocycle; i.e. we choose

for each (p,q)<H x<H, p*q a function bpq € Cix} such that
bpq - brq = ¢(p,r;:q)

For each fundamental pair (p,q) ¢ P we define

+ if dlp,q) =1 : apq = bpq * Sgp ¢ Uix}

* if p=max(m,q): apq = b ¢ Uix}

q “Ppq * tqm S

qm

We put Ap ={ayql(p.q) P}

Dnductive Process (4.6)

We will describe a procedure that, starting from the above data produces:
* an ideal J ct

+ elements Tp, cU{x}, ptqe H

* elements ((p,q:r) <Uix}, p.gsr ¢ H.

This is achieved by defining inductively

ideals @}y CQqocC...cOclh

subsets Aj CAy C...; Ap={ag,dix}id(p.q)<k)

subsets ¥y C ¥oC...; ¥p={d(p,qir) cUMx} d(p,r) &d(q,r) <k}
subsets Ty CToC... ; "L'k={que Uix}idip,q) <k}

*

*

*

*

Dhnitialisation:

* ()4 = (0)

* A C Ar

* ¥y : If d(p,r)=d(q,r)=1, we put q,»(p,q;r)::apr - agr
* ‘Tl: If d(p,q)=1, put qu:= ¢(r,p;q)d(r.q;p), where r=max({p,q})

Remark that ¢(r,p;q) and ¢(r,q;p)cAg.
Onduction:

Suppose Q. A, ¥ Ty have been constructed.

Consider p,qe#H, with d(p,q)=k+1, and let m:= min(p,q).

Clearly: ampeﬂk; dlpgm)e¥y ; Tpm € Tk ;

By the Weierstra8 Division Theorem we can find unique Q and R
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such that:
Tpm = Q.¢(p,q;m) + R

where Q ¢ U{x} and R ¢ ULx] such that
deg, (R) <ord,(¢(p,q;m) =ord(9(p,q;m) =mip,q).
We define:
¢lqm;p) : = Q
qu :=R
(Remark that qu=0 if d(p,q)=2 and (p,q) is a fundamental pair.
We put:
Q1= Gy {Qpqld(p.)=k+1h),
where qu CU is the ideal generated by the coefficients of qu.
We can now define:
qu = ¢(q,m; p)¢ (p,q;m)
aqp:=d)(q,m;p)+amp
Finally we put:
Wp,q;r) := apr~aqr if d(p,r & d(q,r) < k+1.
Thus we have defined Qy.q, Ag.y ¥iape Tiot-

Proposition (4.7) s
Let ) and Ty,

Then the Rim Equations are satisfied modulo {3}, i.e:

R(p.q;8) : Tpq~ ¢(s.pi@) ¢(s.q;p) =0 in (W/Q{x
C(p,q.,r;s): Glp,q;s) + Plq,ris) + ¢(r,p;s) =0 in (U/{x}

¢(p,q;r) be the result of the Inductive Process (4.6).

proof : The fact that the Cocycle equations C(p,q,r;s) hold, in fact
not only mod {}, follows trivially from the structure of the Inductive
Process. In fact, the splitting of the cocycle in (4.5) is only introduced
to control the Cocycle equation; it does not influence the rest of the
inductive process, and in practice one can forget about it.

The fact that the Rim equation R(p,q;s) are all satisfied is a little bit
more involved. We will first show, with induction on d(p,q), that for

any p,q and s, with s on the chain from p to q the Rim Equations
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R(p.q;s), R(s,p;q) and R(q,s;p) are satisfied. Because the three cases
are similar we will only consider the Rim Equation R(s,p;q).
Let m:= min(p,q). If s=m then the Rim Equation R(s,p;q) holds by
definition modulo Q, because of the definition of ¢(q,m;p), and the
ideal Q Now assume s + m. We may assume without loss of generality
that me €(s,q). It follows from the coherence of the mininum function
that m=min(s,q).
We use the cocyle conditions C(q,s,m;p) and C(q,p, m;s) to rewrite
lq,s;p)d(q,p;s) as:
¢(q,m;p)d(q,m;s) + ¢(q,m;p)P(m,p;s)
+ ¢im,s;p)¢ (q.m;s) + ¢(m,s;p)¢(m,p:s)

By induction we have T,q=¢(m,s;p)¢(m,p;s) modulo Q.

So we have to show that:

(%)= Wlq,m;p)P(q,m;s) + ¢(q,m;p)P(m,p;s) + ¢(m,s;p)p(q,m;s) =0

in (W/QP(x}.
Now by lemma (4.8) below, none of the ({'s is a zero-divisor in
(M/Q){x}, so the proof of (x) is formally the same as in (2.9).
For the case that p,q and s are not on a chain in the limit tree, take
m to be the centre of p, q and s in the limit tree, and argue as above,
using the fact that the Rim equations are now known to hold for

three vertices on a chain in the limit tree. b

Lemma(4.8)s Let U be a power series ring, £} CU an ideal and
f= Zakxk
be an element of (U/(){x}. If for some k ay is a unit of U/} then f

is not a zero-divisor.

proof: Let n be the smallest number such that a  is a unit. Then one

can write:
fzux® +r
where u is a unit and deg,(r) <n-1. Let g(U/Q){x} with f-g = 0.

oo .
1'r-g. From this it follows that ge{) (x) = 0. ®

i=1

Then x"g = - u~
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Theotem(4.9):

Let X be a rational surface singularity with reduced fundamental cycle.
Suppose we have chosen:

* functions S o(p,q;r) ¢ C{x} that satisfy the Rim Equations (2.2),

Pq’ _
such that X is described by the Canonical Equations (2.2).

* a limit tree T (1.12), with coherent minimum function min and
maximum function max (3.21).

* the ring U, as in (4.3).

Let Qcl, Toq: O(p,q;r)cU{x} be defined as the result of the
Dnductive Process (4.6).

Let B :=Specan(l/(}).

Then the family X3 — B, defined by the
equations:

Q—B(p,q):= ZpqZqp - qu =0
Zor~ Zqr® d(p,q;r)

is a semi-universal deformation of X.

prook: The above family is flat because of (2.11) and (4.7).
This means that one has:

Yz pQBlam) -z Qplp.m) +¢(p.gmQa(p.q) = 0 mod Q.
We claim that the obstruction element of the family is equal to:

°° -(p,q):{zp,q} f/e('f)pq Ko
where K(p,q) ¢ sz are defined as in (3.22). For this we only have to
check that the values on the determining set of relations [p,q;ml &
cyclic (m=min(p,q)) are the same. So we have to calculate the
expression *) as element of }/m{)}. As in the proof of (3.1) one sees

that *) is equal to:

zmp{¢(p,m;q)¢(p,q;m) - qu)
" Zmq {9(p.m;i@)dlq,psm) - Ty
+ ¢(p,q;m) { $(m,p;q)P(m,q;p) - Tpq!
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Because m = min(p,q) this expression is by definition equal to:

“ZmpEqp * ZmqFpq
Similarly one sees that the values of ob on:
[q,m;pl is -zpqEpq + «p(m,q;p)Eqp mod m{)
[m,p:ql is quEqp - «p(m,p;q)qu mod mf).

So from (3.22) it follows that the obstruction element is as claimed.
Now remark that qu = 0 for (p,q) a fundamental pair. We know that
(p,q) is a fundamental pair exactly when gq=max({p,min(p,q)}). Hence
the injectivity of the obstruction map follows from the explicit bases
of sz of (3.28) together with the remark that the degree of qu in

X is smaller than m(p,q).

Rematk (4.10): The inductive process is not algorithmic in the sense
that Weierstrass division cannot be (a priori) done in a finite amount
of time. In case one has an algebraic representative of the singularity
X, i.e. the elements of AF are polynomials, one can use the Mora
normal form instead of Weierstrass division in the inductive process
(4.6). This means that one works in the polynomial ring localized at
m. For any Tpm and ¥(p,q;m) in this localization one can find

(constructively) elements Q, R and h ¢ m such that:

a +h)Tpm= QY¥(p,q;m) +R
with degy(R) <m(p,q).
The proof that in this case one also finds a semi-universal deformation
is the same as above, if one uses the remark that an ideal generated
by coefficients of a power series does not change if one multiplies the

power series by a unit.

RZMﬁtk { 4 -1”) 4

Although the inductive process (4.6) gives a method to compute the
equations of the base space, it does not seem to be wise to do so in

examples. We did an example (simpler than the example (1.7)), and

= BF =



got an computer output of about five pages, which of course we will
not reproduce here.

In our opinion, however, the equations for the base space in explicit
form are not of importance at all; what matters is their interpretation
in terms of division with remainder.

In simple examples this interpretation enabled us to determine the
number of components of the base space. We will study the question -

on the number of components of the base space in a future article.
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